
1

Traffic Engineering in Software Defined Networks

Sugam Agarwal 1 Murali Kodialam T. V. Lakshman

Bell Labs,Alcatel-Lucent

Holmdel, NJ, USA

{muralik, lakshman@alcatel-lucent.com}

Abstract—Software Defined Networking is a new networking
paradigm that separates the network control plane from the
packet forwarding plane and provides applications with an
abstracted centralized view of the distributed network state. A
logically centralized controller that has a global network view
is responsible for all the control decisions and it communicates
with the network-wide distributed forwarding elements via stan-
dardized interfaces. Google recently announced [5] that it is
using a Software Defined Network (SDN) to interconnect its data
centers due to the ease, efficiency and flexibility in performing
traffic engineering functions. It expects the SDN architecture
to result in better network capacity utilization and improved
delay and loss performance. The contribution of this paper is on
the effective use of SDNs for traffic engineering especially when
SDNs are incrementally introduced into an existing network. In
particular, we show how to leverage the centralized controller
to get significant improvements in network utilization as well
as to reduce packet losses and delays. We show that these
improvements are possible even in cases where there is only a
partial deployment of SDN capability in a network. We formulate
the SDN controller’s optimization problem for traffic engineering
with partial deployment and develop fast Fully Polynomial Time
Approximation Schemes (FPTAS) for solving these problems. We
show, by both analysis and ns-2 simulations, the performance
gains that are achievable using these algorithms even with an
incrementally deployed SDN.

I. INTRODUCTION

Software Defined Networking (SDN) is a new networking

paradigm [1], [13], [14] that separates the control and forward-

ing planes in a network. This functional separation and the im-

plementation of control plane functions on separate centralized

platforms has been of much research interest due to various

expected operational benefits. Separating interdomain routing

from individual routers and using a logically centralized Rout-

ing Control System was proposed in [2], [4] as a means to

make routing systems more manageable, less complex and

be accommodative of new service needs. The SoftRouter

architecture [12] proposed the disaggregation of routers into

packet forwarding elements, with open standardized interfaces,

that are controlled by centralized control plane servers. This

was proposed as a means for quicker introduction of network

functions such as traffic engineering, new VPN features, etc.

and also to achieve various other cost, operational benefits. Re-

architecting the control plane into a dissemination plane and a

decision plane was proposed in [10]. The disseminaton plane

reliably disributes information to the network elements and

the decision plane makes all decisons that affect the network.

1 Work done while at Bell Labs

This re-architecture makes it easier for the decision plane to

have a global view of network state and permits operators to

express desired network behavior more easily.

Common to all the above approaches is that an SDN

comprises of two main components:

• SDN Controller (SDN-C): The controller is a logically

centralized function [3], [8]. A network is typically

controlled by one or a few controllers. The controllers

determines the forwarding path for each flow in the

network.

• SDN Forwarding Element (SDN-FE): The SDN-FEs

constitute the network data plane. The logic for forward-

ing the packets is determined by the SDN controller and

is implemented in the forwarding table at the SDN-FE.

Openflow [14] is a standardized interface that can be used by

the controller to communicate with the forwarding element.

When a flow is initiated in the network the following actions

are taken: (i) The first packet of the flow is sent by the SDN-

FE to the SDN controller, (ii) The forwarding path for the flow

is computed by the SDN controller (SDN-C), (iii) The SDN-C

sends the appropriate entries to install in the forwarding tables

at each SDN-FE on the path from the source to the destination,

(iv) All subsequent packets in the flow are forwarded in the

data plane and do not need any control plane action.

The SDN controller is responsible for path selection and

therefore all policy information resides at the controller. It

is also possible to implement centralized or partially central-

ized traffic management function at the SDN controller. For

instance, Google has built a SDN with Openflow routers to

interconnect its data centers (G-Scale) [5]. Google is expecting

an improvement in network utilization of 20-30% as well as

improved delay and loss performance [5] as a result of using

an SDN.

The traffic engineering problem that we consider is moti-

vated by scenarios where SDNs are incrementally deployed in

an existing network. In such a network, not all the traffic is

controlled by a single SDN controller. There may be multiple

controllers for different parts of the network and also some

parts of the network may use existing network routing. The

key question then is whether it is still possible to do effective

traffic engineering when all the traffic in the network cannot

be controlled centrally by a single SDN controller.

In this paper, we consider traffic engineering in the case

where a SDN controller controls only a few SDN forwarding

elements in the network. The rest of the network does hop-

by-hop routing using a standard routing protocol like OSPF.

2

The objective of the paper is to develop a SDN deployment

scheme that can adaptively and dynamically manage traffic in

a network to accommodate different traffic patterns. Our main

contributions in this paper are the following:

• To our knowledge, this is the first paper to address

network performance issues in an incrementally deployed

SDN.

• We formulate the SDN controller’s optimization problem

and outline a Fully Polynomial Time Approximation

Scheme (FPTAS) to solve the controllers problem.

• We show by analysis and simulatons the considerable

gains in delay and loss performance even when a limited

number of SDN forwarding elements are deployed in the

network.

• Given a fixed number of SDN-FEs we outline an algo-

rithm for determining the placement of these forwarding

elements.

Due to space limitations, we do not show extensions to the

approach in this paper to the problem where the network is

partitioned between multiple SDN controllers.

II. SYSTEM DESCRIPTION

We consider a network where a centralized SDN controller

computes the forwarding table for a set of SDN forwarding

elements. We assume that the SDN forwarding elements are a

subset of the nodes in the network. The rest of the nodes in the

network run some standard hop-by-hop routing protocol like

OSPF. We assume that the SDN-C peers with the network and

gathers link-state information. The SDN-FEs forward packets

and the logic for computing the routing table at the SDN-FEs

resides at the centralized SDN -C. In addition to forwarding

packets, the SDN-FEs do some simple traffic measurement

which they forward to the controller. The controller uses this

traffic information along with information disseminated in

the network by OSPF-TE to dynamically change the routing

tables at the SDN-FEs in order to adapt to changing traffic

conditions. The controller also exploits the fact that it can

make co-ordinated changes across the different SDN-FEs that

it controls to manage changing traffic effectively. The regular

nodes in the network, also referred to as the non-SDN-FEs,

are standard routers using the usual hop-by-hop forwarding

mechanism. This hybrid network scenario with traditional

networks intermixed with SDNs is also considered in [11].

Our objectives are considerably different from the objectives

in [11]. We assume that no changes are made to the non-SDN-

FEs and in fact they can be unaware of the existence of the

SDN-FEs in the network.

An example of a network with SDN-FEs and controller is

shown in Figure 1. SDN-FEs 2, 9, 14 are controlled externally.

We will use this network to illustrate some of the concepts

that we outline in the rest of the paper. We assume that all

the links in the network are bidirectional and all link weights

are set to one. We now describe the SDN-FEs and the SDN-C

in some more detail. The description is at a fairly high level

especially for the SDN-C. The actual algorithm that are run

at the controller is outlined in Section 3.

Controller

Flex Node

Flex Node

Flex Node

1

2

4

8

10

6

5

13

14

12

15

11

9

7

3

Fig. 1. SDN-FEs and SDN Controller

A. SDN Forwarding Element

The SDN-FEs perform the following functions:

Forwarding: The SDN-FEs act basically as forwarding ele-

ments. The routing table at the SDN-FEs is however computed

by the SDN-C. We assume that the SDN-FEs can handle

multiple next hops for a given destination. If there are multiple

next hops for a given destination, then the SDN-FEs can split

traffic to the destination in a pre-specified manner across the

multiple next hops.

It is relatively easy for the controller to compute multiple

next hops and load the routing table to the SDN-FEs [12].

There are several ways of splitting traffic on multiple next

hops [15] while ensuring that a given flow is not split across

multiple next hops. Some of these approaches need extra

measurements and it is relatively easy to extend the current

approach to obtain the extra information. Therefore in the rest

of the paper, we assume the the SDN-FEs can split traffic

across multiple next hops for a given destination. We also

assume that the SDN-FEs can perform traffic measurements

using techniques such as those in [15].

Measurement: The routing table at the SDN-FEs is modified

slightly, compared to a standard routing table, in order to aid

traffic measurement at the SDN-FEs. A schematic representa-

tion showing the difference between a standard routing table

and the routing table at the SDN-FEs is shown in Figure 2.

Note that there is an extra column for the node in the network

that can reach the destination IP address. When a packet is

processed by the SDN-FE it does a longest prefix match on

the destination IP address to determine the next hop. It also

increments a counter corresponding to the destination node

by the packet length. This is done in order to determine the

amount of traffic between the SDN-FE and all other nodes

in the network. Consider the routing table at node 2. Assume

that node 15 (IP address 45.67.2.5) announces reachability to

the subnet 135.23\16. Let node 11 with interface IP address

43.2.34.7, be the next hop on the shortest path from node 2
to node 15. A portion of the routing table at node 2 is shown

in Figure 2. The column corresponding to the traffic tracks

the number of bytes routed from node 2 to node 15 for the

destination prefix 135.23\16. It is easy for the SDN-FE to also

compute the total traffic sent from node 2 to node 15.

3

Hop
Next

Traffic

135.23/16

Prefix Node

45.67.2.5 43.2.34.7

Fig. 2. Enhanced Routing Table at the SDN-FE

B. SDN Controller

The SDN-C has all the routing logic and it coordinates the

routing of all the SDN-FEs in order to achieve good network

performance. The controller does the following functions:

Peering: The SDN-C peers with the other nodes in the net-

work exchanging link weights and other topology information

using OSPF-TE. (See [9] for an example.) Note that in OSPF-

TE, the nodes also exchange available bandwidth information

on the links in the network. Therefore the controller knows the

current OSPF weights as well as the amount of traffic flow on

each link (averaged over some time period).

Route Computation: The controller is responsible for com-

puting the routing table for all the SDN-FEs in the network.

It computes these routing tables taking into consideration the

routing done by non-SDN-FEs (based on OSPF link weights),

the traffic at the links (derived from OSPF-TE information or)

and the current traffic pattern (inferred from the measurements

at the SDN-FEs). The algorithm for computing the routing

table for the SDN-FEs has to ensure that routing will be

along loop-free paths while minimizing the congestion in

the network. We will describe the SDN controller’s problem

formulation and solution technique in Sections 3 and 4.

III. THE SDN CONTROLLER’S PROBLEM

We now describe the problem that the SDN controller has

to solve in detail. Assume that the network comprises of a set

of nodes N interconnected by a set of directed links E. We

assume that there are n nodes and m links in the network. Let

C ⊆ N denote the set of SDN-FEs and D = N \ C denote

the non-SDN-FEs. Let w(e) and c(e) denote the OSPF link

weight and capacity respectively of a link e ∈ E. We use f(e)
to represent the traffic flow on link e. The flow on all links

e ∈ E is available to the controller from OSPF-TE. We use

Tsd to represent the traffic rate from node s ∈ N to some

other node d ∈ N and Wud to represent the total amount of

traffic for destination d ∈ N that either originates or passes

through SDN-FE u ∈ C. Note that in general Wud ≥ Tud.
SDN-FE u can measure Wud for all destinations d using the

enhanced routing table described in Section 2. The value of

Tsd for all node pairs (s, d) will not be known to the controller.

Each node computes the shortest path to all other nodes in the

network. The routing table at node u ∈ N comprises of the

next hop on the shortest path to each node in the network.

We use NH(u, d) to denote the next hop node for destination

d at node u. In other words, NH(u, d) is the first node on

the shortest path from u to d. In the remainder of this paper,

we assume that the next hop is unique for all the non-SDN-

FEs, i.e, NH(u, d) has only one element for all u ∈ D. We

make this assumption purely for the ease of exposition. The

techniques in this paper extend directly to the case where there

alternate shortest paths between two nodes and traffic is split

between these two paths as in Equal Cost Multipaths. Note

that while NH(u, d) is computed based on shortest paths for

all nodes u ∈ D, NH(u, d) can be set arbitrarily when u ∈ C
as long as there are no routing loops.

We illustrate some of the ideas outlined in the above

paragraph using Figure 3. We assume that all link weights

are one and the solid links represent the shortest path tree

to node 13. This is the tree that will result if the SDN-FEs

also use the standard shortest path computation. Recall that

nodes 2, 9, 14 are the SDN-FEs. Note that NH(6, 13) = 10,
NH(1, 13) = 2 and so on. The dotted lines in the network

that show the alternate links possible at the SDN-FEs. For

example, node 2 can split the traffic to node 13 along two

different next hops one going to node 5 and the other to node

11.

1

4

8

10

6

5

13

14

12

15

11

7

3

2

9

Fig. 3. Shortest Path Tree to Node 13

Definition 1: Given a set of SDN-FE nodes C, a path

s = u0, u1, u2, . . . uk = d from a source node s to a des-

tination node d will be termed feasible if for j = 1, 2, . . . , k,

(uj−1, uj) ∈ E and

uj = NH(uj−1, d) if uj−1 ∈ D .

A feasible path where u0, u1, . . . , uk are distinct is called an

admissible path. Let Psd denote the set of admissible paths

between s and d.

From the definition, note that a path is feasible if the

next hop to a given destination for all the non-SDN-FEs is

given by the shortest path algorithm. Further a feasible path

is admissible only if it is loopless. Therefore we have to

ensure that all the traffic between s and d has to be routed

on P ∈ Psd.

For example, in Figure 3, 3−2−5−12−13 is an admissible

path from 3 to 13. Note that this is not the shortest path which

is 3− 2− 11− 13. The path 3− 6− 11− 13 is not admissible

since the next hop for node 3 which is a non-SDN-FE has to

be the next hop on the shortest path, which is node 2.

4

Definition 2: Given shortest path routing at the non-SDN-

FEs, traffic that goes from source to destination without tran-

siting through a SDN-FE will be referred to as uncontrollable

traffic. If the source of a packet is a SDN-FE, or if it passes

through at least one SDN-FE before it reaches its destination

then this traffic will be called controllable traffic.

In other words, controllable traffic comprises of packets that

pass through at least one SDN-FE if the packets are routed

using standard OSPF. There is at least an opportunity at the

SDN-FEs to manipulate the path of controllable traffic. For

example the traffic from 6 to 13 is routed by OSPF along

6− 10− 13, and since neither 6 nor 10 are SDN-FEs, traffic

from 6 to 13 is not controllable. In contrast, traffic from node

8 to 13 passes through node 9 which is a SDN-FE and hence

this traffic is controllable.

Definition 3: We say that a SDN-FE u ∈ C injects a packet

if

• Node u is on the OSPF routing path for the packet.

• The packet passes through u before it passes through any

other SDN-FE.

The traffic that is injected by SDN-FE u ∈ C to some

destination node d ∈ N will be denoted by Iud.

Therefore, for all controllable traffic there is a unique SDN-

FE that injects this traffic. Note that the SDN-FE may or may

not be the source of the traffic that it injects. We illustrate

these ideas in Figure 4. In this figure, the number next to the

node represents the traffic rate from that node to node 13.

For example, the traffic from node 1 to node 13 (T1,13) is 3
units. By Definition 3, note that the traffic from 3 to 13 will

be injected by the SDN-FE 2. If the values of Tsd are known

for all source-destination pairs (s, d), then the value of Iud
can be computed as follows: Remove the links going out of

the SDN-FEs and let OSPF route all demands until it reaches

the SDN-FEs or the destination. The traffic that accumulates

at the SDN-FEs is the traffic that is injected by the SDN-

FE. For example in Figure 3, I2,13 = 9 , I9,13 = 13 and

I14,13 = 5. As stated earlier, the values of Tsd are not known

to the SDN-C. The only measurements available at the SDN-

C are the values of Wud which is the traffic for destination d
that passes through node u ∈ C.

3

24

6

4

6

2

1

1

2

4

3
5

13

9

4

6
3

1

2
4

11

1

6

43

3
3

3

7

9

11

13

15

12

14

5

6

10

8

4

2

1

Fig. 4. Independently Routable Traffic at the SDN-FEs

A. Formulation of the SDN-C’s Problem

Since the only traffic that we can manipulate is the traffic

that passes through the SDN-FEs, we just focus on the traffic

injected at the SDN-FEs. Traffic Iud is injected by SDN-FE

u ∈ C that has to reach destination d. It can only do so

along one of the admissible paths P ∈ Pud. Let g(e) denote

the uncontrollable flow on link e. (Note that g(e) is easy to

computed if the source-destination traffic rates Tsd are all

known in advance. As stated earlier, this will not be the case

in practice. However, we still give the formulation below

in order to motivate the actual dynamic routing problem

solved by the SDN-C). The objective of the SDN-C is to

route the controllable traffic such that delay and packet loss

at the links are minimized. The delay and packet loss at

the links are increasing functions of the link utilization and

therefore we use the link utilization as a surrogate for the

delay/losses at the link. One natural objective for the SDN-C

is to minimize the maximum utilization of the links in the

network. In the formulation, the variables are x(P), which is

the flow in path P . Since the number of paths in the network

can be exponential in the number of nodes and arcs, the

formulation is also exponential. We prefer this path to the

more compact node-arc formulation since it lends itself better

to the development primal-dual approximation algorithms.

The SDN-C solves the following optimization problem:

minimize θ

subject to

g(e) +
∑

P :P∋e

x(P) ≤ θ c(e) ∀e ∈ E (1)

∑

P∈Pud

x(P) ≥ Iud ∀u ∈ C d ∈ N (2)

x(P) ≥ 0 ∀P (3)

• The first set of inequalities ensure that the total flow

on the link which is the sum of the uncontrollable flow

(represented by g(e)) and the controllable flow (which is

the second sum term on the right hand side) is less than

the product of the maximum link utilization (θ) and the

capacity of the link (c(e)).
• The second set of inequalities ensures that the total

injected traffic is routed in the network.

• The third set of inequalities ensures that the flow on any

path is non-negative.

The optimum value of θ is the maximum utilization of any

link. Note that if the optimum value of θ < 1, then none of

the links will be over-utilized. Once the SDN-C solves this

optimization problem, it is easy to compute the next hops

and the corresponding fractions at all the SDN-FEs for each

destination.

In the formulation above, we assumed that values Iud
and g(e) are known. In reality both the quantities Iud as

well as g(e) have to be computed by the SDN-C based on

5

the measurements made by the SDN-FEs and the OSPF-TE

messages received by the SDN-C.

B. Computing Iud and g(e) Dynamically

The only measured quantities that are available to the SDN-

C are

• The link load f(e) for all links e ∈ E that can be got

from OSPF-TE information.

• The quantities Wud for all u ∈ C for all d ∈ N . This is

measured by the SDN-FEs and sent to the SDN-C.

Using these two quantities, the SDN-C has to compute the

values of g(e) for all e ∈ E and Iud for all u ∈ C for all

d ∈ N . We first outline the computation of Iud. Consider

a fixed destination node d. The SDN-C knows the current

routing to this destination node d. It knows all the next hops

for all nodes in D and at all the SDN-FEs it not knows all

the next hops for the destination and the traffic split if there

are multiple next hops.

Definition 4: Given a destination d and the current routing

in the network, the routing order of the nodes in C with

respect to this destination d is defined as an ordering of the

nodes in C \ d such that if u ∈ C appears before v ∈ C in

this list then there is no traffic whose destination is d that is

routed from v to u. We denote the routing order for destination

node d as R(d) and the fact that u appears before v in R(d)
as u ≺d v.

This routing order is well defined for any destination node d
since there cannot be any routing loops in the traffic flowing

to destination d. (In fact it is possible to order all the nodes in

the network not just the nodes in C, but we are interested only

in the ordering of the nodes in C.) Assume that the current

routing to node 13 is as shown in Figure 5. We only show the

portion of the routing that is relevant for the SDN-FEs. In this

case note that there is traffic from node 9 that passes through

node 14. Therefore 9 ≺13 14. One routing order is (2, 9, 14).
Other orderings are possible but node 14 should appear after

node 9 in any ordering.

10

5

13

14

12

15

11

2

9

Fig. 5. Illustrating Routing Order

The algorithm to compute the values of Iud is given below.

Computing Iud

For each destination d ∈ N
1. Compute the routing order R(d)
2. For the first node u in R(d) set Iud = Wud

3. Route one unit of flow from u to d and

set βv(u, d) be the fraction of this unit

flow that reaches node v ∈ C.

4. For each successive node w in R(d)
Set Iwd = Wwd −

∑

u≺dw
βw(u, d)Iud.

Route one unit of flow from w to d and

compute βv(w, d) for all v ∈ C.

Once the values of Iud are known for all u ∈ C for all

d ∈ N , we use this to compute the values of the g(e) which

is the uncontrollable traffic that flows on link e ∈ E. This is

done as follows We inject one unit of flow at node u ∈ C
for destination d ∈ N and computes αe(u, d) which is the

fraction of this unit flow that is routed on link e. Since we

know Iud for u ∈ C, we can compute

g(e) = f(e)−
∑

u∈C

∑

d

αe(u, d)Iud ∀e ∈ E.

The SDN-C now knows the values of Iud for all nodes u ∈ C
for all d ∈ N as well as the values of g(e) for all e ∈ E.

C. Formulating the Dynamic Routing Problem

The SDN-C routes traffic to minimize the maximum

utilization of the links in the network. An equivalent problem

that is more convenient to solve is to keep the capacities of

the link fixed but scale the injected traffic so that it still fits

in the network. This problem is the following:

maximize λ

subject to
∑

P :P∋e

x(P) ≤ c(e)− g(e) = b(e) ∀e ∈ E (4)

∑

P∈Pud

x(P) ≥ λIud ∀u ∈ C d ∈ N (5)

x(P) ≥ 0 ∀P (6)

If the optimal λ > 1 then the current traffic can be routed

at the SDN-FEs while ensuring that all link utilizations are

less than one. Note that the optimal solution to this scaling

problem is the inverse of the optimal solution to the min-max

utilization problem. In spite of the fact that the problem has an

exponential number of variables, we can solve the problem to

any desired level of accuracy using a primal-dual algorithm.

In order to write the dual linear program to the dynamic

routing problem shown above, we associate dual variables

l(e) with each link capacity constraint (4) and zud for the

6

demand constraints (5). The dual can now be written as

minimize
∑

e∈E

b(e) l(e)

subject to
∑

e∈P

l(e) ≥ zud ∀P ∈ Pud ∀u ∈ C ∀d (7)

∑

u∈C

∑

d∈N

Iud zud ≥ 1 (8)

l(e) ≥ 0 ∀e ∈ E. (9)

Assume that we set l(e) to be the weight of link e ∈ E.

(We use the term weight instead of cost in order to avoid

confusion with the OSPF link costs). Note from the first set

of constraints zud is the lightest path from u to d. (Again

we use the term lightest path to avoid confusion with the

shortest path using OSPF costs). Let Lud denote the lightest

path from u to d using the link weights l(e) on link e. The

dual can now be re-written as

minimize
∑

e∈E

b(e) l(e)

subject to
∑

u∈C

∑

d∈N

Iud Lud ≥ 1 (10)

l(e) ≥ 0 ∀e ∈ E. (11)

In other words, given any non-negative set of link weights

l(e), note that
∑

e∈E
b(e)l(e)

∑
u∈C

∑
d∈N

IudLud
is an upper bound on the

dynamic routing problem. We now outline the solution of the

dynamic traffic management problem.

D. Solving the Dynamic Routing Problem

We use a Fully Polynomial Time Approximation Scheme

(FPTAS) to solve the dynamic routing problem at the SDN-C.

The reason for solving the problem as an FPTAS instead of

a standard linear programming problem is that the FPTAS is

very simple to implement and runs significantly faster than

a general linear programming solver especially on medium

and large sized problems. An FPTAS provides the following

performance guarantees: for any ϵ > 0, the solution has

objective function value within (1 + ϵ)-factor of the optimal,

and the running time is at most a polynomial function of the

network size and 1/ϵ. The FPTAS in our case is a primal dual

algorithm.

The primal dual algorithm for our problem works as follows:

The algorithm first computes a value δ that is a function of

the desired accuracy level ϵ, the number of nodes n and the

number of arcs m. The dual weight of each edge e ∈ E is

initialized to l(e) = δ
b(e) . The primal dual algorithm operates

in phases where in each primal phase flow is routed to a given

destination from all SDN-FEs along the lightest permissible

path (using the dual vector l(e) as the link weight). Once

each SDN-FE u has shipped a flow of Iud to destination d,

the (dual) weights of the arcs on which flow has been sent is

incremented. This process of augmenting flow and updating

the dual lengths is repeated until the problem is dual feasible.

The algorithm is given in more detail below:

Algorithm COMPUTE THROUGHPUT:

DL ← 0
l(e) ← δ/b(e) e ∈ E
Rsd ← 0 ∀(s, d)
while DL < 1 do

for each destination d ∈ N
d′(u) = Iud ∀u ∈ C
while DL < 1 and d′(u) > 0 for some u ∈ C do

Pud : Shortest admissible path using l,
∀u with d′(u) > 0

c = mine∈∪sPsd
b(e)

ρ(e) is the utilization of e ∈ E
ρ = max{1,maxe∈∪uPud

ρ(e)}
f(u) = min{d′(u), c} ∀u

Route
f(u)
ρ

flow from each u to d.

d′(u) = d′(u)− f(u)
ρ

Rud = Rud +
f(u)
ρ

l(e) = l(e) (1 + ϵρ(e))
Recompute DL =

∑

e∈E b(e)l(e)
end while

end for

end while

λ = min Rud

Tud

Output λ

The next result gives the running time of the algorithm

and the proof of this result is almost identical to the one in

Karakosatas [7].

Theorem 1: Set

δ =
1

(1 + nϵ)
1−ϵ

ϵ

(

1− ϵ

m

)
1

ϵ

then the running time of the primal-dual algorithm is

O(ϵ−2m2 logO(1) m)

where m is the number of edges in the graph.

Some Remarks:

1. The algorithm follows in the same vein as Karakostas

[7]. The correctness of the algorithm as well as the running

time analysis is identical to the results in the paper and is

therefore omitted. There are however some key differences in

the implementation of the algorithm.

7

2. Unlike the Karakostas [7] paper, the computation is

organized on a destination basis rather than the source. This

is critically important for us since we can compute the routing

from all SDN-FEs to any destination using a single shortest

path computation. Since the routing at the non-SDN-FEs is

based on the destination, we cannot organize the computation

from each source.

3. In each iteration, we have to compute the lightest admissible

path from all SDN-FEs to a given destination. We show how

this is done in Figures 6 7. In Figure 6, we give the OSPF

shortest path tree to node 13 along with all links incident to

the SDN-FEs. The numbers next to the links represents the

dual weights (not OSPF costs). All other links also have dual

weights but we do not show them here. Assume that we are

now computing the lightest admissible paths to node 13 from

all the SDN-FEs. (2, 9, 14). Since the admissible paths have

to use the OSPF shortest path at all the non-SDN-FEs, we

can now reduce the graph to remove all the non SDN-FE

nodes. We introduce an arc from each SDN-FE to node 13

for each path from that SDN-FE to node 13. This is shown

in Figure 7. Note that the arc with 0.8 from node 2 to node

13 represents the path 2 − 11 − 13 and the arc with weight

0.4 from node 2 to node 13 is the path 2− 5− 12− 13. Once

this new graph is formed, the lightest arc from each SDN-FE

to the destination represents the lightest path. The reduced

graph is shown explicitly only for illustrative purposes and is

only computed implicitly during the primal dual algorithm.

4. Since we are maximizing the throughput of the network,

there exists an optimal solution to the problem where the

routing has no loops. This is due to the fact that loops

increase network utilization without increasing throughput.

However, there may be alternate optimal solutions with loops.

The primal-dual algorithm typically finds the loopless optimal

solution. To guard against loops in the optimal solution, we

post process the optimal solution using a breadth-first search

to detect and eliminate loops. The running time of this post

processor is dominated by the running time of the primal

dual step.

0.5
0.3

0.1

0.2 0.2

0.2

0.1

0.1

0.5

0.5

0.5

0.5

0.3

0.3

0.3

0.3

0.3

2

4

8

10

6

5

13

14

12

15

11

9

7

3

1

Fig. 6. Part of the Graph with Dual Weights

IV. SELECTING THE LOCATION OF SDN-FES

Given a network topology, the first decision is to pick the

set of SDN-FE locations in the network. Once these SDN-

0.4

0.5

0.8

0.6

0.5

0.2

14

9

13

2

Fig. 7. Reduced Graph for Lightest Path to Node 13

FE locations have been determined, the SDN-C solves the

dynamic routing problem periodically to determine the routing

of traffic at the SDN-FEs based on the traffic pattern in

the network. Theoretically any system with SDN-FEs will

outperform a system without SDN-FEs if all the information

available to the SDN-C is accurate. In practice the improve-

ment in performance in a system with SDN-FEs depends on

the location of the SDN-FEs. The optimum selection of nodes

will depend on the traffic matrix which will not be known

accurately ahead of time. There are two options. The first is

to pick the nodes independent of the traffic matrix and the

second approach is to use some estimate of the traffic pattern

to pick the SDN-FEs. We attempted both these approaches but

we only outline the second approach in this paper. We assume

that we know the number of SDN-FEs in the network and we

are given a tentative traffic matrix T where Tsd is the traffic

between nodes s ∈ N and d ∈ N . The actual traffic can, and

in general will, deviate from this traffic matrix. Assume that

we have to locate h SDN-FEs. We use T to decide where

these h SDN-FEs are placed in the network.

Definition 5: The throughput of a traffic matrix T over a

set of SDN-FEs C is defined as the largest scalar λ such that

λT can be routed in the network along permissible paths. We

denote the throughput value by λ(T,C).
Note that if C = ∅ corresponds to the case where there are

no SDN-FEs and the network behaves as an OSPF network.

The case where C = N corresponds to the case where all the

nodes in the network are SDN-FEs. From the definition, it is

easy to see

λ(T, ∅) ≤ λ(T,C) ≤ λ(T,N) ∀T,C.

Also note that λ(T,N) can be computed by solving a standard

maximum concurrent flow problem on the network.

Therefore given T and f , the objective then is to determine

max
C:|C|=h

λ(T,C).

It can be shown that this problem is NP-hard. We use a

incremental greedy approach to solve this problem. We

start off assuming that the set of SDN-FEs is empty. In

each step of the algorithm, we add the node that gives the

biggest throughput increase to the existing set. This process

is repeated until we have h SDN-FEs in the network. Since

8

the values of Tsd are known, the throughput problem can be

written as

maximize λ

subject to
∑

P :P∋e

x(P) ≤ c(e) ∀e ∈ E (12)

∑

P∈Psd

x(P) ≥ λTsd ∀s ∈ N d ∈ N (13)

x(P) ≥ 0 ∀P (14)

Since the problem is structurally the same as the SDN-

Cs problem, we can use a similar primal-dual algorithm for

solving this problem.

V. EXPERIMENTAL RESULTS

We ran two groups of experiments to check the effectiveness

of the algorithm using the following three topologies: (i)

The 15 node topology shown in Figure 1, (ii) The Exodus

(Europe) topology from ROCKETFUEL. This topology has

22 nodes and 74 links, (iii) The Abovenet topology from

ROCKETFUEL. This topology has 22 nodes and 84 links.

For the 15 node topology all the link capacities were

assumed to be equal and the link weights were assumed to

be one. For the ROCKETFUEL topologies, the link weights

are given and the link capacities are assumed to be the inverse

of the link costs. (We have consolidated multiple links between

two nodes into a single link in the experiments). We performed

two classes of experiments on all three topologies. The first

is the static performance measurement and the second is the

ns-2 simulation of the new routing scheme.

A. Static Performance Measurement

These experiments were performed to compute the expected

performance improvement due to the dynamic routing algo-

rithm if we are given a traffic matrix. This is also used to pick

the set of SDN-FEs in the network. In all the plots for static

performance measurement, we plot the normalized throughput.

The normalized throughput for a given set of SDN-FEs C is

defined as
λ(T,C)

λ(T,N)
.

This ratio is always less than one. Note that for OSPF routing

with no SDN-FEs the value of C = ∅. We performed two sets

of experiments.

• Normalized Throughput versus Number of SDN-FEs

For all three topologies, we plot the normalized through-

put as we increase the number of SDN-FEs. The initial

value when the number of SDN-FEs is zero corresponds

to OSPF routing. Note the sharp increase in the normal-

ized throughput initially. This seems to be the reason for

the good performance of the algorithm even when there

are a few SDN-FEs. For all subsequent experiments, the

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Number of Flex Nodes

15nodes
Exodus

Abovenet

Fig. 8. Effect of Number of SDN-FEs

number of SDN-FEs for the 15 node topology is set to

three and for the ROCKETFUEL topologies is set to four.

• Robustness of the Choice of SDN-FEs

In the second set of experiments, we tested the sensitivity

of the performance with respect to the real traffic matrix

(as opposed to the traffic matrix that is used to pick

the SDN-FEs). In other words, since the location of

the SDN-FEs is fixed assuming some traffic matrix, we

wanted to see how well this choice performed if the traffic

matrix is completely different. Therefore, in the second

set of experiments, we fixed the SDN-FEs for the Exodus

topology to four and fixed their location based on some

estimated traffic matrix. We then chose 20 random traffic

matrices to check the performance improvement that we

get with the different traffic matrices with the same SDN-

FE locations. Again we plot the normalized throughput

for each of the twenty experiments for both OSPF and

SDN routing. Note that the normalized throughput of

SDN routing is significantly better than OSPF for all the

experiments.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Experiment Number

OSPF Routing
Flex Routing

Fig. 9. Performance for Different Traffic Matrices

B. ns-2 Simulation Experiments

Here the objective is to measure link delays and losses in

the network under shortest path routing and routing with SDN-

FEs. The link state routing protocol was modified to allow

SDN-FEs whose routing table was computed centrally using

the primal-dual algorithm. For each of the three networks sev-

eral traffic patterns were generated with each source sending

9

Max Loss Max Loss
SDN Routing OSPF

15node EXP 1 0.000 415.000
15node EXP 2 0.000 391.000
15node EXP 3 0.000 320.000
Exodus EXP 1 0.000 140.000
Exodus EXP 2 0.000 105.000
Exodus EXP 3 2.000 106.000

Abovenet EXP 1 1.000 449.000
Abovenet EXP 2 52.000 555.000
Abovenet EXP 3 0.000 552.000

TABLE I
COMPARISON OF MAXIMUM LOSS OVER ALL LINKS

Mean Loss Mean Loss
SDN Routing OSPF

15node EXP 1 0.000 13.543
15node EXP 2 0.000 11.894
15node EXP 3 0.000 13.228
Exodus EXP 1 0.000 4.906
Exodus EXP 2 0.000 4.693
Exodus EXP 3 0.040 4.106

Abovenet EXP 1 0.012 8.200
Abovenet EXP 2 0.612 11.552
Abovenet EXP 3 0.000 6.670

TABLE II
COMPARISON OF MEAN LOSS OVER ALL LINKS

CBR UDP traffic with randomly chosen rates. Different seeds

were used to generate random traffic patterns. For the 15 node

topology we used 3 SDN-FEs and for the 22 node topologies

we used 4 SDN-FEs. The remainder of the nodes used standard

shortest path forwarding. Each simulation was run for 10
seconds. We ran several experiments on all three topologies.

We show three typical results for all three topologies. Tables I

and II show the maximum number of packets lost over all the

links and the mean number of packets lost per link respectively

over the 10 second simulation period. Note that SDN Routing

does significantly better than than standard OSPF routing. The

same is true for the maximum delay (Table III) and mean delay

(Table IV). The difference in performance is accentuated if the

simulation is run for longer time periods.

VI. CONCLUSION

Incremental SDN deployment where SDNs co-exist with

traditional networks is an important deployment scenario that

needs to be considered. This is of particular importance

for large networks where complete greenfield deployment is

Max Delay Max Delay
SDN Routing OSPF

15node EXP 1 0.119 0.283
15node EXP 2 0.153 0.285
15node EXP 3 0.060 0.277
Exodus EXP 1 0.913 1.645
Exodus EXP 2 0.757 1.732
Exodus EXP 3 0.717 1.712

Abovenet EXP 1 0.228 0.242
Abovenet EXP 2 0.288 0.396
Abovenet EXP3 0.297 0.496

TABLE III
COMPARISON OF MAXIMUM DELAY OVER ALL LINKS

Mean Delay Mean Delay
SDN Routing OSPF

15node EXP 1 0.003 0.011
15node EXP 2 0.005 0.010
15node EXP 3 0.002 0.015
Exodus EXP 1 0.070 0.106
Exodus EXP 2 0.060 0.106
Exodus EXP 3 0.053 0.100

Abovenet EXP 1 0.010 0.021
Abovenet EXP 2 0.014 0.029
Abovenet EXP3 0.013 0.025

TABLE IV
COMPARISON OF MEAN DELAY OVER ALL LINKS

difficult. We have shown how improved network performance

can be achieved with an incremental deployment of a SDN

in an existing network. Deploying even a few strategically

placed SDN-FEs in the network can lead to improved network

performance. The scheme does not involve making any pro-

tocol changes at the remaining nodes in the network which

route traffic in a shortest path hop-by-hop manner. Initial

performance measurements as well as ns-2 simulations show

that the method can significantly improve overall network

throughput while providing better delay and loss performance

in the network.

REFERENCES

[1] M.Casado, M.Freedman, J.Petit, J.Luo, N. McKeown, S.Shenker,
”Ethane: Taking Control of the Enterprise”, ACM SIGCOMM CCR,
37(4):1-12, 2007

[2] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and K.
van der Merwe, ”Design and Implementation of a Routing Control
Platform”, Networked Systems Design and Implementation, May 2005.

[3] N.Gude, T.Koponen, J.Petit, B.Pfaff, M.Casado, N. McKeown, ”Nox:
Towards a Network Operating System”, ACM SIGCOMM CCR, July,
2008

[4] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, K. van der Merwe,
”The Case for Separating Routing from Routers”, FDNA 2004.

[5] U. Holzle, ” Opening Address: 2012 Open Network Summit”, April
2012.

[6] ”Network Development and Deployment Initiative (NDDI)”,
http://www.internet2.edu/network/ose/.

[7] G. Karakostas, ”Faster Approximation Schemes for Fractional Multi-
commodity Flow Problems”, Presented at ACM-SIAM SODA 2002.

[8] T. Koponen et. al., ”Onix: A Distributed Control Platform for Large
Scale Production Networks”, OSDI 2010, October, 2010.

[9] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Correa,
S. C. de Lucena, M. F. Magalhaes ”Virtual Routers as a Service: the
RouteFlow approach leveraging Software-Defined Networks”, CFI 2011.

[10] J. Rexford et. al., ”Network-Wide Decision Making: Toward a Wafer-
Thin Control Plane”, HotNets-III, November 2004.

[11] C. Rothernberg, C. N. A. Correa, R. Raszuk ”Revisiting Routing Control
Platforms with the Eyes and Muscles of Software-Defined Networking”,
ACM-SIGCOMM HotSDN Workshop, 2012

[12] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, T. Woo, ”The
SoftRouter Architecture”, Proceeding of Hotnets 2004, November 2004.

[13] N.McKeown, T. Anderson, H.Balakrishnan, G.Parulkar, L.Peterson,
J.Rexford, S.Shenker, J.Turner, ”OpenFlow: Enabling Innovation in
Campus Networks”, ACM SIGCOMM CCR, April, 2008.

[14] The Openflow Switch, openflowswitch.org
[15] A. Sridharan, R. Guerin, C. Diot, ”Achieving Near-Optimal Traffic

Engineering Solutions for Current OSPF/IS-IS Networks”, IEEE/ACM

Transactions on Networking, V. 13, No.2, April 2005.
[16] B. Fortz, M. Thorup, ”Optimizing OSPF/IS-IS Weights in a Changing

World”, IEEE Journal on Selected Areas in Communications, February
2002.

