
1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 1/10

Per Kroll
Published on April 16, 2004

Transitioning from waterfall to iterat
development

This content is no longer being updated or maintained. The content is provided “as is.” Given the
rapid evolution of technology, some content, steps, or illustrations may have changed.

IBM and Red Hat — the next chapter of open innovation. Learn More >

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

Learn › Rational

IBM Developer Topics Community More open source at IBM

https://www.ibm.com/cloud/redhat
https://www.ibm.com/developerworks/learn/
https://www.ibm.com/developerworks/rational/
https://developer.ibm.com/
https://developer.ibm.com/technologies
https://developer.ibm.com/community
https://developer.ibm.com/open

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 2/10

Most software teams still use a waterfall process for development projects. Taking an extreme w
you complete a number of phases in a strictly ordered sequence: requirements analysis, design
and then testing. You also defer testing until the end of the project lifecycle, when problems ten
resolve; these problems can also pose serious threats to release deadlines and leave key team
periods of time.

In practice, most teams use a modified waterfall approach, breaking the project down into two o
called phases or stages. This helps to simplify integration, get testers testing earlier, and provid
status. This approach also breaks up the code into manageable pieces and minimizes the integr
and drivers, required for testing. In addition, this approach allows you to prototype areas you de
feedback from each stage to modify your design. However, that runs counter to the thinking beh
Many design teams would view modifying the design after Stage 1 as a failure of their initial des
And although a modified waterfall approach does not preclude the use of feedback, it does not
encourage it. And finally, the desire to minimize risk does not typically drive a waterfall project.
improvements that an "iterative" approach to the software development process offers over the

Advantages of an iterative approach
In contrast, an iterative approach -- like the one embodied in IBM Rational Unified Process® or
incremental steps, or iterations. Each iteration includes some, or most, of the development disc
analysis, design, implementation, and so on), as you can see in Figure 1. Each iteration also has
objectives and produces a partial working implementation of the final system. And each succes
work of previous iterations to evolve and refine the system until the final product is complete.

Early iterations emphasize requirements as well as analysis and design; later iterations emphas
testing.

Figure 1: Iterative development with RUP. Each iteration includes
analysis, design, implementation and testing activities. Also, eac
the work of previous iterations to produce an executable that is o
final product.

The iterative approach has proven itself superior to the waterfall approach for a number of reas

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 3/10

It accommodates changing requirements. Changes in requirements and "feature creep" --
are technology- or customer-driven -- have always been primary sources of project trouble,
dissatisfied customers, and frustrated developers. To address these problems, teams who u
on producing and demonstrating executable software in the first few weeks, which forces a
helps to pare them down to essentials.

Integration is not one "big bang" at the end of a project. Leaving integration to the end alm
consuming rework -- sometimes up to 40 percent of the total project effort. To avoid this, ea
integrating building blocks; this happens progressively and continuously, minimizing later re

Early iterations expose risks. An iterative approach helps the team mitigate risks in early ite
for all process components. As each iteration engages many aspects of the project -- tools,
members' skills, and so on -- teams can quickly discover whether perceived risks are real an
not suspect, at a time when these problems are relatively easy and less costly to address.

Management can make tactical changes to the product. Iterative development quickly pro
architecture (albeit of limited functionality) that can be readily translated into a "lite" or "mo
release to counter a competitor's move.

It facilitates reuse. It is easier to identify common parts as you partially design or impleme
recognize them during planning. Design reviews in early iterations allow architects to spot p
reuse, and then develop and mature common code for these opportunities in subsequent ite

You can find and correct defects over several iterations. This results in a robust architectu
application. You can detect flaws even in early iterations rather than during a massive testin
can discover performance bottlenecks when you can still address them without destroying y
panic on the eve of delivery.

It facilitates better use of project personnel. Many organizations match their waterfall app
organization: Analysts send the completed requirements to designers, who send a complete
send components to integrators, who send a system for test to testers. These multiple hand
misunderstandings; they also make people feel less responsible for the final product. An ite
wider scope of activities for team members, allowing them to play many roles. Project mana
staff and eliminate risky handoffs.

Team members learn along the way. Those working on iterative projects have many opport
development lifecycle to learn from their mistakes and improve their skills from one iteratio
each iteration, project managers can discover training opportunities for team members. In c
waterfall projects are typically confined to narrow specialties and have only one shot at des

You can refine the development process along the way. End-of-iteration assessments not
project from a product or scheduling perspective; they also help managers analyze how to i
and the process in the next iteration.

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

•

•

•

•

•

•

•

•

•

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 4/10

Some project managers resist adopting an iterative approach, seeing it as a form of endless, un
RUP the entire project is tightly controlled. The number, duration, and objectives of iterations ar
tasks and responsibilities of participants are well defined. In addition, objective measures of pr
the team does rework some things from one iteration to the next, this work, too, is carefully con

Four steps for a transition
Most waterfall projects divide the development work into phases or stages; we can also view th
iterative design. But then, to move to an iterative approach, we would apply different process p
four steps:

Build functional prototypes early.

Divide the detailed design, implementation and test phases into iterations.

Baseline an executable architecture early on.

Adopt an iterative and risk-driven management process.

Let's examine each of these steps more closely.

Step 1: Build functional prototypes early

As a first step toward iterative development, consider one or more functional prototypes during
phases. The objectives of these prototypes are to mitigate key technical risks and clarify stakeh
the system should do.

Start by identifying the top three technical risks and the top three functional areas in need of cla
might relate to new technology, pending technology decisions that will greatly affect the overal
requirements that you know will be hard to meet. Functional risks might relate to areas in which
fuzzy requirements for critical functionality, or to several requirements that are core to the syste

For each of the key technical risks, outline what prototyping you need to do to mitigate the risks
examples:

Technical risk: The project requires porting an existing application to run on top of IBM WebSph
are already complaining about the application's performance, and you are concerned that portin
even more.

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

1.

2.

3.

4.

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 5/10

Prototype: Build an architectural prototype to try out different approaches for porting your app
WebSphere architect to help you. Evaluate the results and write architectural and design guidel
dos and don'ts. This will increase the likelihood that your ported application's performance will
rework late in the project.

Technical risk: You are building a new application for scheduling and estimating software proje
differentiator for this application versus off-the-shelf products will be how well it supports itera
also one of the fuzziest areas in your requirement specification.

Prototype: Build a functional prototype based on your assumptions about how to support iterat
demonstrating the prototype to various stakeholders, you will encourage them to pay more atte
which of your assumptions they agree or disagree with. The prototype will help you clarify the p
provide you with useful information about the user experience and look and feel for your applic
reusable code.

Step 2: Divide the detailed design, implementation and test phas

Many project teams find it hard to divide a project into meaningful iterations before they know w
But when you are ready to enter the detailed design phase, you typically have a good understan
are, and what the architecture will look like. It's time to try out iterative development!

You can use two main approaches to determine what should be done in what iteration. Let's dis
approach.

Approach 1: Develop one or more subsystems at a time. Let's assume that you have nine subsystem
numbers of components. You can divide the detailed design, implementation and test phase into thre
implementing three of the nine subsystems. This will work reasonably well if there are limited depend
subsystems. For example, if your nine subsystems each provided a well-defined set of capabilities to
the highest priority subsystems in the first iteration, the second most important subsystems in the se
approach has a great advantage: If you run out of time, you can still deliver a partial system with the m
and running.

However, this approach does not work well if you have a layered architecture, with subsystems in the
capabilities of subsystems in the lower layers. If you had to build one subsystem at a time, such an ar
build the bottom layer subsystems first, and then go higher and higher up. But to build the right capab
typically need to do a fair amount of detailed design and implementation work on the upper layers, be
need in the lower layers. This creates a "catch-22"; the second approach explains how to resolve it.

Approach 2: Develop the most critical scenarios first. If you use Approach 1, you develop one subsy
you focus instead on key scenarios, or key ways of using the system, and then add more of the less es

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 6/10

different from Approach 1? Let's look at an example.

Suppose you are building a new application that will provide users the ability to manage defects. It is
of WebSphere Application Server, with DB2 as the underlying database. In the first iteration, you deve
as entering a simple defect, with no underlying state engine. In the second iteration, you add complex
example, you might enable the defect to handle a workflow. In the third iteration, you complete the d
providing full support for atypical user entries, such as capability to save a partial defect entry and the

With this approach, you work on all the subsystems in all iterations, but you still focus in the first itera
and save what is least important or least difficult for the last iteration.

Approach 1 is more appropriate if you are working on a system with a well-defined architecture
existing application or developing a new application with a simple architecture, for example. Mo
applications should use Approach 2, but they should plan the iterations in such a way that they
iterations to make up for possible schedule delays.

Step 3: Baseline an executable architecture early on.

You can view this step as a much more formal and organized way of doing Step 1: Build function
what is an "executable architecture"?

An executable architecture is a partial implementation of the system, built to demonstrate that
support the key functionality. Even more important, it demonstrates that the design will meet re
throughput, capacity, reliability, scalability, and other "-ilities." Establishing an executable archi
the system's functional capability on a solid foundation during later phases, without fear of brea
architecture is an evolutionary prototype, intended to retain proven features and those with a hi
system requirements when the architecture is mature. In other words, these features will be pa
contrast to the functional prototype you would typically build in step 1, the evolutionary prototy
architectural issues.

Producing an evolutionary prototype means that you design, implement, and test a skeleton str
system. The functionality at the application level will not be complete, but as most interfaces be
implemented, you can (and should) compile and test the architecture to some extent. Conduct
tests. This prototype also reflects your critical design decisions, including choices about techno
their interfaces; it is built after you have assessed buy versus build options and after you have d
architectural mechanisms and patterns.

But how do you come up with the architecture for this evolutionary prototype? The key is to foc
30 percent of use cases (complete services the system offers to the end users). Here are some

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 7/10

cases are most important.

The functionality is the core of the application, or it exercises key interfaces. The system'
determine the architecture. Typically an architect identifies the most important use cases by
redundancy management strategies, resource contention risks, performance risks, data sec
example, in a point-of-sale (POS) system, Check Out and Pay would be a key use case becau
a credit card validation system -- and it is critical from a performance and load perspective.

Choose use cases describing functionality that must be delivered. Delivering an applicatio
would be fruitless. For example, an order-entry system would be unacceptable if it did not a
Typically, domain and subject-matter experts understand the key functionality required from
behaviors, peak data transaction, critical control transactions, etc.), and they help define cri

Choose use cases describing functionality for an area of the architecture not covered by a
ensure that your team will address all major technical risks, they must understand each are
certain area of the architecture does not appear to be high risk, it may conceal technical diffi
only by designing, implementing, and testing some of the functionality within that area.

The first and last criteria in the above list will be of greater concern to the architect; project man
first two.

For each critical use case, identify the most important scenario(s) and use them to create the ex
words, design, implement and test those scenarios.

Step 4: Adopt an iterative and risk-driven management process.

If you were to follow Steps 2 and 3 as described above, then you would come very close to the
development. Then, your next step would be to fuse Steps 2 and 3, adding a management lifecy
and iterative development. That is the iterative lifecycle described in RUP.

RUP provides a structured approach to iterative development, dividing a project into four phase
Construction, and Transition. Each phase contains one or more iterations, which focus on produ
necessary to achieve the business objectives of that phase. Teams go through as many iteration
objectives of that phase, but no more. If they do not succeed in addressing those objectives wit
they had planned, they must add another iteration to the phase -- and delay the project. To avo
on what you need to achieve the business objectives for each phase. For example, focusing too
Inception would be counterproductive. Below is a brief description of typical phase objectives.

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

•

•

•

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 8/10

Inception: Establish a good understanding of what system to build by getting a high-level un
requirements and establishing the scope of the system. Mitigate many of the business risks
building the system, and get buy-in from all stakeholders on whether or not to proceed with

Elaboration: Take care of many of the most technically difficult tasks: design, implement, te
architecture, including subsystems, their interfaces, key components, and architectural mec
with inter-process communication or persistency). Address major technical risks, such as re
performance risks, and data security risks, by implementing and validating actual code.

Construction: Do a majority of the implementation as you move from an executable architec
version of your system. Deploy several internal and alpha releases to ensure that the system
users' needs. End the phase by deploying a fully functional beta version of the system, inclu
documentation, and training material; keep in mind, however, that the functionality, perform
system will likely require tuning.

Transition: Ensure that the software addresses the needs of its users. This includes testing
release and making minor adjustments based on user feedback. At this point in the lifecycle
mainly on fine-tuning the product, and on configuration, installation, and usability issues; al
should have been worked out earlier in the project lifecycle.1

Many ways to apply these steps
In this article, we have described how you can gradually transfer from a waterfall approach to a
approach, using four transitional steps. Each step will add tangible value to your development e
Some teams may take on more than one step at a time; others may run a few projects based on
next step. However you choose to use this step-wise approach, it can help you reduce the risks
changes in a development organization.

Notes
1 For a detailed description of what a RUP lifecycle looks like in practice, see Chapters 5-8 in Th
Made Easy, by Per Kroll and Philippe Kruchten (Addison-Wesley, 2003).

Downloadable resources

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

•

•

•

•

PDF of this content

https://www.ibm.com/developerworks/rational/library/4243-pdf.pdf

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 9/10

Comments

Sign in or register to add and subscribe to comments.

 Subscribe me to comment notifications

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

IBM Developer

About

Site Feedback & FAQ

Submit content

Report abuse

Third-party notice

Follow us

Select a language

English

中文

⽇本語

Русский

Português (Brasil)

Español

한글

Code Patterns

Articles

https://developer.ibm.com/
https://developer.ibm.com/about
https://developer.ibm.com/feedback
https://developer.ibm.com/terms/submission-of-content-agreement/
https://www.ibm.com/developerworks/secure/report/
https://developer.ibm.com/terms/third-party-notice/
https://twitter.com/IBMDeveloper
https://www.facebook.com/IBMDeveloper
https://www.linkedin.com/showcase/ibmdeveloper/
https://www.youtube.com/channel/UCUm6InQvGI9-6vo1teGWINA
https://developer.ibm.com/
https://www.ibm.com/developerworks/cn/
https://www.ibm.com/developerworks/jp/
https://www.ibm.com/developerworks/ru/
https://www.ibm.com/developerworks/br/
https://www.ibm.com/developerworks/ssa/
https://developer.ibm.com/kr/
https://developer.ibm.com/patterns/
https://developer.ibm.com/articles/

1/13/2020 Transitioning from waterfall to iterative development

https://www.ibm.com/developerworks/rational/library/4243.html 10/10

Contents

Introduction

Advantages of an iterative approach

Four steps for a transition

Many ways to apply these steps

Notes

Downloadable resources

Comments

Tutorials

Recipes

Open Source Projects

Videos

Newsletters

Events

Cities

Developer Answers

Contact Privacy Terms of use Accessibility Feedback Cookie Preferences Unit

https://developer.ibm.com/tutorials/
https://developer.ibm.com/recipes/
https://developer.ibm.com/open/
https://developer.ibm.com/videos/
https://developer.ibm.com/newsletters/
https://developer.ibm.com/events/
https://developer.ibm.com/cities/
https://developer.ibm.com/answers/
https://developer.ibm.com/community/
https://www.ibm.com/privacy/us/en/
https://developer.ibm.com/terms/ibm-developer-terms-of-use/
https://www.ibm.com/accessibility/us/en/

