
The method of sweeping tangents
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I. INTRODUCTION: BASIC THEORY AND EXAMPLES

Sweeping tangents

What is the area of the shaded region between the tyre tracks of a moving bicycle
such as that depicted in Figure 1? If the tracks are specified, and equations for them
are known, the area can be calculated using integral calculus. Surprisingly, the area
can be obtained more easily without calculus, regardless of the bike’s path, using a
dynamic visual approach called the method of sweeping tangents that does not require
equations for the curves.

Figure 1: What is the area of the region between the tyre tracks of a bicycle?

The method is illustrated in Figure 2. The segment joining the bottom of the
rear wheel with that of the front wheel has constant length, denoted here by k, and
is always tangent to the path of the rear wheel. As the bicycle moves, this tangent
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Figure 2: The area of the region between the tracks is that of a quarter of a circular disk.

segment sweeps out the shaded region between the tyre tracks, as suggested by the left
part of Figure 2. The right part of Figure 2 shows each tangent segment translated
(parallel to itself) to bring the points of tangency together at a single point. Because
the tangents have constant length k, the translated segments sweep out a circular
sector of radius k. Therefore, the area of the shaded region between the tracks is
equal to the area of this circular sector, which depends only on the length k and
the change in angle from the bike’s initial position to its final position. To convince
yourself that the areas are equal, consider corresponding tiny ”triangles” of equal area
translated from left to right, as suggested in Figure 2.

Mamikon’s sweeping-tangent theorem

The method of sweeping tangents extends this idea to more general curves and
tangent segments of variable length, as shown in Figure 3. Begin with a smooth curve
τ , called the tangency curve, together with a moving tangent line. The point of tan-
gency moves along τ in a given direction, called the positive direction, as indicated
by the arrowhead in Figure 3. At each point of τ the tangent line defines two rays,
one in the positive direction of motion, the other in the opposite direction. It may be
helpful to imagine an automobile driving along τ with its headlight beam indicating
the direction of a tangent ray. If the automobile moves forward in the positive direc-
tion its headlight beam indicates the direction of motion. If it drives backward, the
headlight beam points in the opposite direction.

Assume a tangent vector moves continuously, always pointing in the positive di-
rection during the motion, or else always pointing in the opposite direction. The
moving tangent vector sweeps out a region called the tangent sweep. The free end of
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Figure 3: The sweep of a tangent of variable length and its cluster have equal areas.

the tangent vector traces a curve σ called the free-end curve. There are two possible
free-end curves, σ+ generated when the tangent vectors point in the positive direction,
and σ− generated when the tangent vectors point in the backward direction. (For an
animated version of two free-end curves see the website in [1] and click on DualRing.)

When each tangent vector is translated, parallel to itself, to bring the points of
tangency together at a single point F , the set of translated segments is called a tangent

cluster. Figure 3 shows a tangent sweep (left) and its corresponding tangent cluster
(right). The method of sweeping tangents is based on:

Mamikon’s sweeping-tangent theorem. The area of a tangent sweep is equal

to the area of its tangent cluster, regardless of the tangency curve.

Note that the tangent cluster of σ− is a reflection through F of σ+, so they have
equal areas. Mamikon’s theorem and its extension to 3-space is proved in [7] (in
Russian); a different proof, given in [2], is outlined briefly at the end of this paper.

For tangents of constant length, the method of sweeping tangents reveals the
striking property that the area of the tangent cluster is always equal to the area of a
circular sector, regardless of the tangency curve τ . But the most striking applications
are those with tangent segments of variable length. They reveal the true power of
the method, which yields areas of regions below the graphs of exponential functions,
power functions, cycloids, and many other classical curves that are described by their
geometric properties rather than by equations. They are discussed in [1]-[4] and [7].

First we briefly summarize the method of sweeping tangents for area, and then we
turn to the principal goal of this paper, which is to extend the method to the more
difficult problem of finding arclengths of these classical curves.
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Area of the tangent cluster

Figure 4 shows a close-up view of the tangent sweep introduced in Figure 3. The
tangent vector from τ to σ points in the positive direction. We denote the length
of this vector by t = t(α), where α is the angle between the moving tangent and
some initial direction, for example, the tangent direction at a conveniently chosen
point denoted by O in Figure 4. The function t(α) provides a polar description of the
tangent cluster, with t(α) representing the radial distance from the common point F
to the boundary curve of the cluster in Figure 3. The proof of Mamikon’s theorem
reveals that the area of the tangent sweep is equal to that of the tangent cluster
which, in turn, can be expressed as an integral in polar coordinates, where α varies
from an initial value α1 to a larger value α2:

area of tangent sweep = area of tangent cluster =
1

2

∫ α2

α1

t2(α)dα. (1)

In applying the method of sweeping tangents, we try to construct the tangent lengths
in such a way that the area of the cluster is easy to calculate. In the bicycle problem
in Figure 2, the tangent segments have constant length k, and the integral (1) gives
the same result we found geometrically:

area =
1

2
k2θ, (2)

which is the area of a circular sector of radius k subtending angle θ = α2 − α1.

Arclength of tangency curve: tangent in the forward direction

Next we show that a knowledge of t(α) enables us to relate the arclength l of τ
in terms of angle α by formulas analogous to (1), as described in (4) and (5) below.
Each of these formulas provides an intrinsic equation for τ , one that does not rely
on any external coordinate system, such as rectangular or polar coordinates. The
intrinsic equation of a curve is also known as its natural equation.

Figure 4 shows the tangent segment of length t = t(α) at position A and at a
nearby position B as α changes by ∆α. The point of tangency slides from A to B
along τ through distance ∆l, and the free end of the tangent vector traces a small arc
∆s on σ. We treat arcs ∆s and ∆l as linear approximations to the curves, as depicted
in Figure 4 for small ∆α. Thus, arc ∆s is the hypotenuse of a right triangle, one leg
of which is t(α)∆α, due to rotation of the tangent vector through angle ∆α without
changing its length. The other leg is made up of two parts, ∆l+∆t, where ∆l is caused
by sliding the rotated tangent along τ without changing its length, and ∆t is caused
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Figure 4: Arclength relations determined by two nearby tangents.

by the variability of its length. In what follows, we always assume that arclength l
increases as the point of tangency moves along τ , so ∆l is positive. However t may
increase or decrease during the motion, so ∆t can be positive or negative. In Figure
4 the tangent vector points in the forward direction, and ∆t is shown as positive.

For a given α, let β denote the complement of the angle between the two tangents
to τ and σ. Thus β is a function of α. The triangle ratio for tan β in Figure 4 yields
the following approximate relation:

∆l + ∆t ≈ t(α)∆α tan β.

Divide by ∆α and let ∆α → 0 to obtain the following equation relating the derivatives
of l and t:

dl

dα
+

dt

dα
= t(α) tan β. (3)

Integrating (3) from α = 0 to α = θ we find an intrinsic equation for l in terms of t:

l(θ) − l(0) + t(θ) − t(0) =

∫ θ

0

t(α) tan β dα. (4)

In most applications we choose O so that l(0) = 0.

Arclength of tangency curve: tangent in the backward direction

In some applications it is convenient to reverse the direction of the tangent vector
so it points opposite to that of increasing l, as shown in Figure 5. Then the triangle
ratio for tan β becomes |∆l − ∆t| ≈ t(α)∆α tan β, where the absolute value allows
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Figure 5: Arclength relations when the tangent vector has backward direction.

for the two possibilities: ∆l > ∆t (Figure 5a), and ∆t > ∆l (Figure 5b). This leads
to a corresponding change in (3):

| dl

dα
− dt

dα
| = t(α) tan β,

and, instead of (4), we now have the backward integrated version

|l(θ) − l(0) − t(θ) + t(0)| =

∫ θ

0

t(α) tan β dα. (5)

Guided by the automobile analogy, we call (4) the forward relation and (5) the back-

ward relation. They are identical when t(α) is constant.

Arclength of free-end curve

Let ∆s denote the change in arclength s of free-end curve σ (the hypotenuse of
the small triangle in Figure 4), measured so that s = 0 when α = 0. Then we have
the following approximate relation, which also holds for Figure 5:

∆s ≈ t(α)∆α

cos β
,

which gives us
ds

dα
=

t(α)

cos β
. (6)

Integrating (6), we obtain an intrinsic equation for s in terms of t:

s(θ) =

∫ θ

0

t(α)

cos β
dα. (7)
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Relating arclengths of free-end curve and tangency curve

A direct connection between the arclengths l of τ and s of σ can be found by
eliminating β in the basic derivative relations (3) and (6). Square each of these and
use the identity tan2 β = sec2 β − 1 to obtain the relation

(
dl

dα
+

dt

dα
)2 = (

ds

dα
)2 − t2(α), (8)

which involves intrinsic equations of τ and σ. It can also be derived directly by
applying the Pythagorean theorem to the triangle with hypotenuse ∆s in Figure 4.
Relation (8), in turn, gives an explicit formula expressing s in terms of l:

s(θ) =

∫ θ

0

√

t2(α) + (
dl

dα
+

dt

dα
)2 dα. (9)

It is easy to show that the classical arclength integral in polar coordinates is a
limiting case of (9). Take τ to be a small circular arc that shrinks to a point. Then
t(α) becomes the radial distance r from this point to σ, dl/dα → 0, and (9) becomes

s(θ) =

∫ θ

0

√

r2 + (
dr

dα
)2 dα.

Also, (9) can be transformed to resemble the classical integral in rectangular
coordinates,

∫ b

a

√

1 + (f ′(x))2 dx,

for the arclength of a curve y = f(x) between two points (a, f(a)) and (b, f(b)). This
follows from (9) by the substitution dx = t(α)dα and dy = dl +dt. The orthogonality
of dx and dy is revealed by the small right triangle in Figure 4.

One can also use (8) to formulate a counterpart to (9) expressing l in terms of s.

Examples: Tangents of constant length

All such examples are special cases of the bicycle problem, with constant length
t(α) = k. For any choice of τ and σ, the area of the tangent sweep is given by (2),
both arclength formulas (4) and (5) become

l(θ) − l(0) = k

∫ θ

0

tan β dα, (10)
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and (7) takes the form

s(θ) = k

∫ θ

0

1

cos β
dα.

Now we consider several examples by specializing τ and σ.

Oval rings. A tangent segment of constant length k moving once around a smooth
simple closed plane curve τ sweeps out a region called an oval ring. The area of the
oval ring is equal to πk2 because its tangent cluster is a circular disk of radius k. If
the tangent moves part way through an angle θ ≤ 2π the tangent cluster is a circular
sector of area 1

2
k2θ, as depicted in Figure 6.

Figure 6: A swept portion of an oval ring has the same area as a circular sector.

Circular rings. Consider a subcase when τ is a circle of radius r and free-end curve
σ is a concentric circle of radius R. The area of the circular annulus is the area of
the cluster πk2, and is also equal to the difference πR2 − πr2. Equating these areas
we find the Pythagorean relation, k2 = R2 − r2. Thus, the Pythagorean theorem is a
consequence of Mamikon’s sweeping-tangent theorem.

For arclengths of concentric circles we use (10) and (7). From Figure 7a we find
tan β = r/k and cos β = k/R. Taking l(0) = 0, we obtain the familiar formulas for
the length of a circular arc subtended by an angle θ:

l(θ) = rθ, s(θ) = Rθ.

To demonstrate the flexibility in the choice of free-end curve we now choose σ
to be a line through the center of the circle τ of radius r as in Figure 7b. In this
example, t(α) is not constant, but t(α) = r tan α and l(α) = rα, so

t(θ) − l(θ) = r(tan θ − θ).

On the other hand, from the backward relation (5) we also find (because now β = α)

t(θ) − l(θ) = r

∫ θ

0

tan2 α dα.

8



β

r
R

α
k β

l

s

(a)

r

αβ

t(α) l

O

(b)

α=0

O

P

P

σ

σ
τ

τ

Figure 7: (a) Circular arclength. (b) Alternative choice of σ as a line through the center.

Therefore, as a fringe benefit of this analysis we obtain the known integration formula

∫ θ

0

tan2 α dα = tan θ − θ. (11)

We can also derive (11) using the area of the tangent sweep in Figure 7b, which (when
α = θ) is that of a right triangle of edges r and t(θ) = r tan θ, minus the area of the
circular sector subtending angle θ. But this area is also that of the tangent cluster
which, by (1), equals 1

2
r2

∫ θ

0
tan2 α dα, and again we obtain (11).

Tractrix. Now take the tangency curve τ to be a tractrix, the trajectory of a toy
on a taut string being pulled by a child walking along a linear path, which we take
as σ, as shown in Figure 8 (left). A standard calculus problem is to calculate the
area of the entire region between the tractrix and the line. Use of calculus requires
finding a Cartesian equation for the tractrix, which in itself is a challenging problem
that usually involves solving a differential equation. Once the Cartesian equation

child

toy

path of toy

path of child

Figure 8: Tangent sweep for a tractrix. The tangent cluster is a circular sector.

is known, integration (which is tedious) shows that the area of the entire region is
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simply πk2/4, where k is the length of the string. But the same result can be found at
once without calculus because the tractrix is a particular case of the “bicyclix,” whose
tangent cluster is a circular sector of radius k, shown shaded in Figure 8 (right). The
area of the entire region is that of a quarter of a circular disk, as in Figure 2.

For arclength, refer to Figure 9. The tangency curve τ is a tractrix, σ is the
positive x axis, the tangent segment has constant length k, β = α, and l(0) = 0,
hence (4) becomes

l(θ) = k

∫ θ

0

tan α dα = −k log(cos θ). (12)

This is an intrinsic equation for the tractrix, expressing its arclength in terms of θ.

l

β

α

k
τ

σ

Figure 9: Arclength of tractrix.

If the point of tangency has Cartesian coordinates (x, y) when α = θ, then cos θ = y/k,
and (12) gives the arclength L = L(y) of the tractrix from (0,k) to (x, y) as

L = −k log
y

k
.

From this we find y = ke−L/k, which means the ordinate y decreases exponentially
with L. In particular, if an automobile drives along the tractrix with constant speed,
its distance from the x axis decreases exponentially with time.

Note: The arclength formula (7) for the free-end curve yields an unexpected fringe
benefit for the tractrix. Using β = α and t(α) = k in (7), we find

s(θ) =

∫ θ

0

k

cos α
dα = k log

1 + sin θ

cos θ
.

Let (x, y) be the point of tangency on the tractrix when α = θ. Because σ is the x
axis, we find

x = s(θ) − k sin θ, y = k cos θ.
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Using cos θ = y/k, we find the classical Cartesian representation of the tractrix as a
direct consequence of intrinsic equation (7):

x = k log
k +

√

k2 − y2

y
−

√

k2 − y2.

In more general examples, where t(α) is not constant, whenever σ is a straight line we
can take it to be the x axis and measure α from a vertical line. From a right triangle
like that in Figure 9, the intrinsic equation for s as a function of α yields

x = s(α) − t(α) sin α, y = t(α) cos α,

which are parametric equations of the tangency curve τ in rectangular coordinates.

II. APPLICATIONS: TANGENT SEGMENTS OF VARIABLE LENGTH

Now we consider examples with tangent segments of variable length, and discuss
both areas of tangent sweeps and arclengths of classical curves described by geomet-
ric properties rather than by equations. Our results for arclength provide intrinsic
equations for these curves.

Exponential. In Figure 10 the tangency curve τ is the graph of an exponential y = ex/b,
where b is a positive constant, and the free-end curve σ is the x axis. It is known (see

bbb

y=ex/b

F

Figure 10: Region under an exponential curve swept by tangents.

[4]) that exponential curves are the only curves with constant subtangents. In fact,
the exponential curve in Figure 10 has constant subtangents of length b.
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We use this geometric property to find the area of the region under an exponential
curve without integral calculus. Part of this region, shown shaded in Figure 10, is
swept by the tangent segments cut off by the x axis as the point of tangency moves
left from (x, y) to (−∞, 0). Instead of using (1) to find the area as an integral, we
refer to Figure 10, which shows each tangent segment translated so that the endpoint
on σ (the x axis) is brought to a common point F , namely, the lower vertex of a right
triangle as shown. Because the subtangent is constant, the resulting tangent cluster
forms a right triangle of base b and altitude y, whose area is also the area of the
tangent sweep. Consequently, the area of the region between the exponential curve
and the interval (−∞, x] is twice the area of the right triangle, which is the area of a
rectangle of base b and altitude y, or by.

In the language of calculus, we have shown that

∫ x

−∞

eu/bdu = bex/b,

but we obtained this without the formal machinery of integral calculus. The only
property of the exponential that we used was the constancy of the subtangent.

b

t(α)

α

β

(x,y)

Figure 11: Arclength of exponential.

For arclength, refer to Figure 11 which shows that t(α) = b/ sin α. Again we
have β = α, hence t(α) tan β = b/ cos α. Integrate (3) from θ0 to θ and denote the
arclength by l(θ) to find

l(θ) = b(
1

sin θ0

− 1

sin θ
+ log

1 + sin θ

cos θ
− log

1 + sin θ0

cos θ0

). (13)

This intrinsic equation for the exponential is valid for 0 < θ0 < θ < π/2.
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At a general point of tangency (x, y) with angle α we have

t(α) =
√

b2 + y2, sin α =
b

√

b2 + y2
, cos α =

y
√

b2 + y2
,

and the intrinsic equation (13) gives the classical formula for the arc length L of the
exponential y = ex/b between (x2, y2) and (x1, y1), where y1 > y2:

L =
√

b2 + y2
1 −

√

b2 + y2
2 + b log

√

b2 + y2
2 + b

y2(
√

b2 + y2
1 + b)

.

Parabola. Figure 12a shows a portion of a parabola y = x2 above the interval [0, x].
We take the parabola as tangency curve τ and the x axis as free-end curve σ. The
tangent segment from τ at (x, x2) to σ has subtangent x/2. From this property, we
have shown in two different ways (using Figures 12a and 12b) that the area of the
parabolic segment between τ and σ is x3/3. (See [1]-[3], where the general power
function y = xn is also treated without integration.)

xx/2

(x,x  )2

β

t

0
α

x

β

t0
α

l l

β = α 

x2 x2

(x,x  )2

(a) (b)

β =    − απ
2

σ

σ

Figure 12: Two methods for calculating the arclength of a parabola.

Now we calculate the arclength traced by a point moving along the parabola from
the origin to (x, x2). To demonstrate the flexibility in the choice of free-end curve,
Figures 12a and 12b illustrate two different ways for calculating the arclength. In
both cases, α denotes the angle between the tangent at (x, x2) and the x axis, but in
Figure 12b the end-curve σ is chosen to be the negative y axis.
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In the backward formula (5) for arclength, t(α) tan β appears in the integrand. To
express t(α) tan β in terms of α, note that in Figure 12a we have β = π/2 − α, and
hence tan β = cot α. Also, tan α = x2/(x/2) = 4(x/2) = 4t(α) cos α, so that

t(α) =
tan α

4 cos α
, and t(α) tan β =

1

4 cos α
.

Now we use (5) with l(0) = t(0) = 0 and we find that the arclength of the parabola
is given by

l(θ) = t(θ) +
1

4

∫ θ

0

dα

cos α
=

1

4
(
tan θ

cos θ
+ log

1 + sin θ

cos θ
). (14)

Figure 12b leads to the same formula for arclength. Now β = α and t(α) has twice
the value in the foregoing calculation. In this case t(α) > l(α) and a sign change is
required in (5). We omit the details. The arclength of a parabola was first found by
Isaac Barrow, who used a different method and expressed the result in an equivalent
form involving θ/2. Again, (14) represents an intrinsic equation for the parabola.

In terms of x, the length L(x) of the parabolic arc from the origin to (x, x2) is

L(x) = |1
2
x
√

4x2 + 1 +
1

4
log(2x +

√
4x2 + 1)|.

Cycloid. A cycloid is the path traced by a fixed point on the boundary of a circular
disk that rolls along a horizontal line (Figure 13). For example, a light fastened to
the rim of a bicycle wheel traces a cycloid as the wheel rolls along a horizontal line.
When the wheel turns half way it traces out cycloidal arc OM . (Another half turn
produces its mirror image.) In [1] we used the method of sweeping tangents to derive
the classical result that the area of the region under the cycloidal arc OM is three
halves times that of the rolling disk. This is based on the fact that the tangent sweep
OPTA in Figure 13a has the circular wedge TPC as tangent cluster. When P = M
the tangent cluster is a semicircular disk of diameter D whose area is πD2/8. The
circumscribing rectangle in Figure 13a has area πD2/2 which implies that the area of
the region under cycloidal arc OM is three halves times that of the rolling disk.

For arclength we refer to Figure 13b. Tangency curve τ is a cycloid, and the
free-end curve is chosen as a horizontal line tangent to the highest point M of the
cycloid, at distance D above the base. Tangent length t(α) is one leg of a right
triangle inscribed in a semicircle of diameter D, so t(α) = D cos α. Now β = α and
t(α) tan β = D sin α. Formula (4) (with θ replaced by α) leads to

l(α) = 2D(1 − cos α) = 2D − 2t(α).
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Figure 13: (a) Area of cycloidal tangent sweep OPTA is equal to that of circular wedge
TCP . (b) Length of cycloidal arc PM is twice that of tangent segment PT .

In particular, when α = π/2, arclength OM is 2D, a result discovered by Christopher
Wren. The general formula for l(α) implies that arclength PM , which is 2D − l(α),
is twice the length of tangent segment PT .

In Figure 13b, D = 2r, where r is the radius of the rolling disk that traces the
cycloid. Denote by L(ω) the length of cycloidal arc OP in terms of the angle of turn
ω of the rolling disk. Then the formula for arclength OP becomes

L(ω) = 4r(1 − cos
ω

2
). (15)

Epicycloid and hypocycloid. Figure 14a shows an epicycloid, a curve traced by a point
P on the boundary of a disk of radius r that rolls along the outer circumference of a
fixed circle of radius R. When the rolling disk makes one complete turn it generates
an arch outside the fixed circle. The method of sweeping tangents, together with
Figure 14, can be used to show that the area of this arch is κ times that of the rolling
disk, where κ = 1 + 2r/R. The argument is based on the fact that the tangent sweep
OPTA in Figure 14a has the shaded region in Figure 14b as tangent cluster. This is
part of a rosette whose area, in turn, is κ times that of the shaded circular wedge in
Figure 14c. Both epicycloidal and hypocycloidal areas are treated in [6] by a different
elementary method.

Here we investigate arclength. In this case, α = κβ, where again κ = 1 + 2r/R.
In Figure 14a the tangency curve τ is the epicycloid and the free-end curve σ is the
circular arc of radius R + 2r. We see that PT = t(α) = 2r cos β and the integrand in
(4), when expressed in terms of β, becomes 2rκ sin β dβ. Now β = ω/2, where ω is
the angle of turn of the rolling disk of radius r. In terms of ω we find the following
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Figure 14: (a) Epicycloidal arc OP . (b) Tangent cluster of tangent sweep OPTA in (a).
(c) Area of the tangent cluster in (b) is κ times that of the circular wedge in (c).

result for the length L(ω) of the epicycloidal arc OP in Figure 14a:

L(ω) = 4r(1 +
r

R
)(1 − cos

ω

2
). (16)

For a hypocycloid, the circle of radius r rolls inside the circumference of the fixed
circle of radius R. In this case κ = 1− 2r/R, and the formula for arclength is similar
to (16), with the factor (1 + r/R) replaced by (1 − r/R). When R = ∞ both reduce
to formula (15) for a cycloid. When ω = 2π the rolling disk traces an epicycloid of
length 8r(1 + r/R) or a hypocycloid of length 8r(1 − r/R). These formulas for the
arclength of a complete arch are also obtained in [6] by an elementary method.

Note that, according to (7), arclength AT of the free-end curve is κrω.

General involute and evolute. Consider a family of normals to a given curve σ, as in
Figure 15. The envelope τ of these normals is called the evolute of σ, and σ, in turn,
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is called the involute of τ . We choose τ as tangency curve and σ as free-end curve.
Because β = 0, the integral in (5) vanishes and we find

l(θ) − l(0) = t(θ) − t(0). (17)

If we take l(0) = t(0) = 0, (17) becomes

l(θ) = t(θ). (18)

This verifies the intuitively apparent fact that if a taut string is unwrapped from a
point O on τ , its free end will trace the involute σ.

β = 0

t(α)

s

l(α)

O

P

involute σ

α = 0

α

evolute τ

Figure 15: General involute-evolute relations.

From (1) we find that the area A(θ) of the region between the evolute and involute
swept by the tangent from α = 0 to α = θ is

A(θ) =
1

2

∫ θ

0

l2(α)dα. (19)

Formula (7) for the free-end curve gives the arclength of the involute:

s(θ) =

∫ θ

0

l(α)dα. (20)

From (20) we can find the arclength l of the evolute τ in terms of s by differentiation:

l(θ) = s′(θ). (21)

Thus, the traditional involute-evolute relations (19), (20), and (21) are merely special
cases of our basic relations (1), (7), and (6) when t(α) is chosen to be l(α), the
arclength of the tangency curve.
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Involute of a circle. Figure 16 shows the special case in which the tangency curve τ
is a circle of radius r. Here t(α) = rα, where α is measured counterclockwise with
α = 0 at O. Now use (20) with l(α) = t(α) = rα to obtain

s(θ) =
1

2
rθ2.

This intrinsic equation expresses the arclength of the involute of a circle in terms of
the unwrapping angle.

r
α

Involute 
of circleCircle

(a) (b)

O

F

Archimedean 
        spiral 

rα

t=rα α

Figure 16: (a) Tangent sweep between a circle and its involute. (b) Its tangent cluster is
bounded by an Archimedean spiral.

Figure 16b shows the tangent cluster of the tangent sweep in Figure 16a. Its
boundary is an Archimedean spiral because the polar radius is proportional to angle α.
Let A(θ) denote the area of the region swept by the polar radius rα of an Archimedean
spiral as α varies from 0 to θ. Formula (19) for the area swept between the circle and
its involute implies

A(θ) =
1

2

∫ θ

0

(rα)2 dα =
r2θ3

6
. (22)

This can be written as 1
3
(R2θ/2), where R = rθ. This result, which was found

by Archimedes, states that the area of the region swept by the polar radius of an
Archimedean spiral is one-third the area of the circular sector whose radius is the
final polar radius of the spiral.

Evolute of a tractrix. Figure 17a shows a tractrix and an arc OP of its evolute. This
means that if a string lying along the evolute is unwrapped from O, its free end traces
a portion of a tractrix joining point O to point T . The tangent segment from the
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tractrix at T to the base line AX has constant length k, which is equal to the height
of O above AX. We shall determine the length l of arc OP , and the area of the
ordinate set OAXP between the evolute and the base AX.

According to (21), l(α) = s′(α), where s is the arclength of the involute, the
tractrix in this case, which we have calculated in (12). Renaming l in (12) as s we
find, by differentiation, s′(α) = k tan α, so the arclength l = l(α) of the evolute is

l(α) = k tan α. (23)

O

X

PP

O

X

T

T '

A A

A'

T

k

k

l
l

α

α

α

k k

l
α

k

(a) (b)

Figure 17: (a) The evolute of a tractrix. (b) Proof that area of ordinate set OAXP is that
of rectangle TPT ′X. This fact implies that the evolute of a tractrix is a catenary.

Next we show that the area of ordinate set OAXP is equal to that of rectangle
TPT ′X in Figure 17b, with vertical diagonal XP and edges of lengths k and l. Region
OAXP consists of three parts: OAX swept by tangent segments of length k to the
tractrix, OTP swept by tangent segments of variable length l(α) to the evolute OP ,
and triangle PTX.

Divide triangle PT ′X into two regions, a circular sector PA′T ′, and region A′XT ′.
Sector PA′T ′ is the tangent cluster of OAX, the tangent sweep of the tractrix, so
they have equal areas. Region A′XT ′ is swept by tangent segments to the circular
arc A′T ′, which are obtained from tangent sweep OTP by parallel translation of each
tangent segment from the evolute. Therefore both swept regions A′T ′X and OTP
have the same tangent cluster, so they have equal areas.
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Thus, the sum of the areas of the two shaded regions on the left of the diagonal
PX is equal to the area of the shaded triangle PT ′X on the other side of the diagonal.
By adding the area of the common unshaded triangle PTX we find

area of ordinate set OAXP = area of rectangle TPT ′X = kl(α), (24)

where l(α) is given by (23).

Catenary as evolute of a tractrix. Now we use our results for arclength and area to
deduce the known fact that the evolute of a tractrix is a catenary. Arclength formula
(23) and area formula (24) together show that

∫ x

0

y(u) du = k2y′,

which, when differentiated, gives y = k2y′′. The unique solution to this differential
equation with y(0) = k and y′(0) = 0 is

y = k cosh
x

k
= k

ex/k + e−x/k

2
. (25)

This is the Cartesian equation for the catenary, and (23) is its intrinsic equation.
Formulas (23) and (24) for arclength and area can also be expressed in terms of

hyperbolic functions. Let L(x) denote the arclength of the catenary from (0,k) to
(x, y), and let A(x) denote the area of the corresponding ordinate set. Then (23) and
(24) give us the classical formulas

L(x) = sinh
x

k
, and A(x) = k2 sinh

x

k
,

where sinh x = (ex − e−x)/2 is the derivative of cosh x.
Also, (24) tells us that the area of the ordinate set between the catenary and the

interval AX is equal to the length l(α) of the arc multiplied by the height k of its
lowest point above AX, and is also equal to k2 times the slope of the tangent line at
P . Moreover, the ordinate XP of the catenary is equal to k/ cos α.

The catenary is well known as the shape of a uniform flexible chain that hangs
under its own weight. The standard proof of this fact makes use of a triangle of
equilibrium of forces that is similar to triangle PTX in Figure 17a.

Note. We can derive the arclength of the tractrix stated in (12) from the intrinsic
equation of the catenary in (23). Choose again the tractrix as the free-end curve with
the catenary as tangency curve, and use (7), taking β = 0 and t(α) = l(α) = k tan α.
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Generalized pursuit curve. Figure 18a shows a tangency curve τ and a horizontal
free-end curve σ. At a general point of τ a tangent segment of length t(α) cuts off a
subtangent of length b(α). For a tractrix, t(α) is constant, and for an exponential, b(α)
is constant. Now we consider the more general case in which a convex combination
of t(α) and b(α) is constant, say

µt(α) + νb(α) = C, (26)

for some choice of nonnegative µ and ν, with µ + ν = 1. If ν = 0, τ(α) is constant
and the tangency curve τ is a tractrix, which can be regarded as a pursuit curve. If
µ = ν then t(α) + b(α) is constant, and τ is another pursuit curve in which a fox
running on σ is pursued by a dog on τ having the same speed as the fox. Because of
these examples, we refer to any curve satisfying (26) as a generalized pursuit curve.

t(α)

b(α)

D

α

β

l

τ

σ

focus F

t(α)

α

(a) (b)

D

C

Figure 18: (a) Generalized pursuit curve: µt(α) + νb(α) = C. (b) Tangent cluster of
tangent sweep in (a) is a focal sector of a conic section.

Now we will show that the tangent cluster of a generalized pursuit curve is bounded
by a conic section with eccentricity ν/µ and a focus at the common point F of the
translated segments. An example is shown in Figure 18b.

In Figure 18a we have β = α and b(α) = t(α) sin α. Let D = t(0) and let e = ν/µ,
where µ 6= 0. Then b(0) = 0 and (26) implies

t(α) =
D

1 + e sin α
. (27)

This is the polar equation with radial distance t(α) of a conic with eccentricity e and
focus at F .
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Thus, the area of the tangent sweep in Figure 18a is equal to that of the corre-
sponding tangent cluster in Figure 18b, a sector of a conic section swept by a focal
radius. This is analogous to the Keplerian sector swept by the radius vector from the
sun to an orbiting planet. Note that we have found the area of the shaded region
below the pursuit curve without knowing any equation that describes the curve. Its
intrinsic equation will be derived below in (30).

As Figure 18a suggests, the distances t(α) and b(α) are asymptotically equal
as α → π/2. From (26) and (27) we find that the asymptotic pursuit distance is
t(π/2) = C = Dµ.

Now we determine the arclength l of τ from the forward formula (4). Using (27)
and t(0) = D in (4) we find

l(θ) =
De sin θ

1 + e sin θ
+ D

∫ θ

0

sin α

(1 + e sin α)(cos α)
dα. (28)

The substitution u = sin α converts the integral in (28) into

∫ sin θ

0

u

(1 + eu)(1 − u2)
du.

Partial fraction decomposition requires us to consider two cases, e = 1 and e 6= 1.

Case e = 1. In this case the integrand is given by

1

4
(

1

1 + u
− 2

(1 + u)2
+

1

1 − u
),

and (28) yields the intrinsic equation for the arclength of a classical pursuit curve:

l(θ) =
D sin θ

2(1 + sin θ)
+

D

4
log

1 + sin θ

1 − sin θ
. (29)

In this case, using (7), we find that s(θ) is equal to l(θ) as given by (29). This is to
be expected because the dog and fox have equal speeds.

Case e 6= 1. In this case (28) leads to the following intrinsic equation for the arclength
of a generalized pursuit curve:

l(θ) =
De sin θ

1 + e sin θ
+

D

2
(

1

e − 1
log

1 + sin θ

1 + e sin θ
− 1

e + 1
log

1 − sin θ

1 + e sin θ
). (30)

It can be shown (as expected) that (29) is a limiting case of (30) as e → 1.
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The exponential curve corresponds to µ = 0 in (26), or the limiting case e → ∞.
By taking l(θ)− l(θ0) in (30) and letting e → ∞ in such a way that D/e → b, (where
b is the constant subtangent of the exponential) we are led once more to (13). For
e > 1 the conic (27) is a hyperbola, which, when e → ∞, degenerates into a line at
distance b from the focus. This line appears as the dashed vertical line in the cluster
triangle in Figure 10, where the common cluster point F is at distance b from this
line and serves as the focus of the degenerate hyperbola.

In the generalized pursuit curve (26), σ is the x axis and β = α. Hence, as
mentioned earlier, we can use (7) to calculate s(α) and obtain parametric equations
for the rectangular coordinates of any point on the pursuit curve τ .

CONCLUDING REMARKS

The method of sweeping tangents was used in earlier papers [1]-[4] and [7] to
calculate areas of many regions bounded by classical curves described by geometric
properties rather than by equations. This paper extends the method to determine
arclengths of these curves directly from their geometric properties. The method
involves two curves, the tangency curve τ and the free-end curve σ, and the tangent
vector from one to the other. Intrinsic equations for each of these curves are obtained
by expressing their arclengths in terms of the direction angle of the sweeping tangent.
We have demonstrated that by judicious choice of τ and σ, these intrinsic equations,
in turn, lead to simple straightforward derivations of many known classical results in
both polar and rectangular coordinates. In particular, we derived classical involute-
evolute relations by choosing the length of the sweeping tangent segment to be the
arclength of the tangency curve. Such a special choice could be used to obtain an
alternative evaluation of the arclength of a cycloid, an idea introduced by Christopher
Wren. The same idea also works for the epicycloid and hypocycloid. There are many
other applications of our method not included in this paper.

Brief sketch of proof of Mamikon’s theorem

In the most general form of Mamikon’s theorem, the tangency curve τ need not
lie in a plane. It can be any smooth curve in space, and the tangent sweep will lie on
a developable surface, one that can be rolled out flat onto a plane without distortion.
The tangent cluster lies on a conical surface whose vertex is the common point F in
Figure 3. The general form of Mamikon’s theorem states that the area of a tangent
sweep to a space curve is equal to the area of its tangent cluster. A detailed proof
using differential geometry is given in [2], and a brief sketch of this proof is given
here.
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Start with a smooth space curve τ described by a position vector X(l), where
l, the arclength function for the curve, varies over an interval, say 0 ≤ a ≤ l ≤ b.
The unit tangent vector to τ is the derivative dX/dl, which we denote by T (l). The
derivative of the unit tangent is given by

dT

dl
= κ(l)N (l),

where N (l) is the principal unit normal and κ(l) is the curvature.
Curve τ generates a surface S that can be represented by the vector parametric

equation
y(l, u) = X(l) + uT (l),

where u varies over an interval whose length can vary with l, say 0 ≤ u ≤ f(l). As
the pair of parameters (u, l) varies over the ordinate set of the function f over the
interval [a, b], the surface S is swept out by tangent segments extending from the
initial curve τ to another curve σ described by the position vector y(l, f(l)).

Geometrically, S is a developable surface, that is, it can be rolled out flat on a
plane without distortion. We refer to surface S generated from curve τ in this fashion
as a tangent sweep. The area of S is given by the double integral

a(S) =

∫ b

a

∫ f(l)

0

|| ∂y

∂l
× ∂y

∂u
|| du dl.

A straightforward calculation of the integrand shows that

a(S) =

∫ b

a

(

∫ f(l)

0

u du) κ(l) dl =
1

2

∫ b

a

f2(l)κ(l) dl.

Next, imagine the arclength l expressed as a function of the angle α between the
tangent vector T and a fixed tangent line, say the tangent line corresponding to l = a.
When l is expressed in terms of α, the function f(l) becomes a function of α, and
we write f(l) = t(α), the length of the sweeping tangent vector. On the surface S,
α is the angle between tangent geodesics, so the curvature κ is the rate of change
of α with respect to arclength, κ = dα/dl. In the last integral we make a change of
variable expressing l as a function of α. Then f 2(l) = t2(α), κ(l)dl = dα, and the
integral for a(S) becomes

a(S) =
1

2

∫ α2

α1

t2(α) dα, (31)

where α1 and α2 are the initial and final angles of inclination corresponding to l = a
and l = b, respectively. Formula (31) shows that area a(S) does not depend explicitly
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on the arclength of τ ; it depends only on the angles α1 and α2. In fact, a(S) is equal
to the area of a plane radial set with polar coordinates (t, α) satisfying 0 ≤ t ≤ t(α)
and α1 < α ≤ α2. When τ is a plane curve, (31) becomes (1) and gives the planar
form of Mamikon’s theorem.
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