# Phil 2: Puzzles and Paradoxes

### Prof. Sven Bernecker University of California, Irvine

Explaining the Liar Paradox

# History of the Liar Paradox

 The liar paradox is attributed to the Greek philosopher **Epimenides** (6<sup>th</sup> century BC), a Cretan, who reportedly stated that "All Cretans are liars."



 One version of the liar paradox is attributed to the Greek philosopher Eubulides of Miletus (4<sup>th</sup> century BC). Eubulides reportedly asked, "A man says that he is lying. Is what he says true or false?"



2

4

- The Indian grammarian-philosopher Bhartrhari (late 5<sup>th</sup> century CE) was well aware of a liar paradox which he formulated as "everything I am saying is false."
- The Persian scientist Naşîr al-Dîn al-Ţûsî (1201-1274) could have been the first to identify the liar paradox as self-referential.





3

### Indexicals

- Indexicals are words whose referent and meaning are determined by such contextual factors as the time, location, and intentions of the speaker. Examples:
  - · Pronouns: I, he, she, this, that
  - · Adverbs: here, now, actually, presently, today, yesterday, tomorrow
  - · Adjectives: my, his, her, actual, past, present, future, left/right, up/down
- See lecture "A-Theory and B-Theory of Time," slide #5

6

8

# Self-Referential Sentences

• A self-referential sentences is a sentences that refers to themselves as a sentence.

#### · Examples:

- John is reading this sentence
- This sentence contains exactly threee erors.
- "Ice" has three letters

Self-contradictory statements (cf. Harold Evans, *Newsman's English*, 1972, p. 182)

- · Make each pronoun agree with their antecedent.
- · Join clauses good, like a conjunction should.
- · Verbs has to agree with their subjects.
- · Don't write run-on sentences they are hard to read.
- · Don't use commas, which aren't necessary.
- · It's important to use your apostrophe's correctly.
- · Proofread your writing to see if you any words out.
- The passive voice is to be avoided.
- Try to not ever split infinitives.
- Don't use no double negative.
- · Correct spelling is esential.
- Don't abbrev.

5

## Liar Paradox

#### This sentence is false

#### L<sub>1</sub>: L<sub>1</sub> is false

7

- Suppose L<sub>1</sub> is true; then it is as it says it is false. So L<sub>1</sub> is false. However, suppose that it is false. Well, false is just what it says it is, and a sentence that tells it the way it is is true. So L<sub>1</sub> is true. So, if L<sub>1</sub> is true, it is false; and if it is false, it is true. So it seems that L<sub>1</sub> is neither true nor false.
- This is a paradox if we assume the principle of bivalence. This principle states that declarative sentences such as L<sub>1</sub> are either true or false.

### Principle of Bivalence

- *Principle of Bivalence*: Every declarative statement has exactly one truth value, either true or false.
- Motivation: "any non-defective representation of how things are in the world must be either accurate or inaccurate, true or false" (Sainsbury, p. 113).
- Are there counterexamples to the principle of bivalence (not counting aesthetic, theological and ethical judgments)?
  - You have stopped beating your wife

### Analysis of the Liar Paradox

### L<sub>1</sub>: L<sub>1</sub> is false

By the principle of bivalence,  $L_1$  is either true or false.

#### First, let's assume the $L_1$ is true.

| 1) "L <sub>1</sub> " is true | Assumption                 |
|------------------------------|----------------------------|
| 2) L <sub>1</sub>            | (1), Disquotation          |
| C) "L1" is not true          | (2), Def of L <sub>1</sub> |

• (1) & (C) form a contradiction

Next, let's assume  $L_1$  is false.

| 1) "L <sub>1</sub> " is not true | Assumption                 |
|----------------------------------|----------------------------|
| 2) L <sub>1</sub>                | (1), Def of L <sub>1</sub> |
| C) "L <sub>1</sub> " is true     | (2), Disquotation          |

- (1) & (C) form a contradiction
- Thus we can derive a contradiction from the assumption that "'L1' is true or 'L1' is not true." So we have a violation of the principle of bivalence.

10

## Strengthened Liar

- Suppose we claim that  $L_1$  is **neither true nor false**. Let's call this claim G. G:  $L_1$  is neither true nor false.
- G entails that  $L_1$  is not false. But if  $L_1$  is not false, then not- $L_1$  is true. And if not- $L_1$  is true, then  $L_1$  is false. So G entails a contradiction:  $L_1$  is not false and  $L_1$  is false.
- So we cannot solve the liar paradox by claiming that  $\mathsf{L}_1$  is neither true nor false.

#### A tongue-in-cheek liar-style puzzle:

- A: This sentence contains seven words.
- Sentence A is clearly false. So its opposite ought to be true. Right?
- B: This sentence does not contain seven words.
- Sentence B is the opposite of A and it is false too. How could this be?

9