Phil 2: Puzzles and Paradoxes

Prof. Sven Bernecker
University of California, Irvine

Explaining the
Liar Paradox

History of the Liar Paradox

- The liar paradox is attributed to the Greek philosopher Epimenides ($6^{\text {th }}$ century BC), a Cretan, who reportedly stated that "All Cretans are liars."
- One version of the liar paradox is attributed to the Greek philosopher Eubulides of Miletus ($4^{\text {th }}$ century BC). Eubulides reportedly asked, "A man says that he is lying. Is what he says true or false?"

2

- The Indian grammarian-philosopher Bhartrhari (late $5^{\text {th }}$ century CE) was well aware of a liar paradox which he formulated as "everything I am saying is false."
- The Persian scientist Nașīr al-Dīn al-Ṭūsī (12011274) could have been the first to identify the liar paradox as self-referential.

Indexicals

- Indexicals are words whose referent and meaning are determined by such contextual factors as the time, location, and intentions of the speaker. Examples:
- Pronouns: I, he, she, this, that
- Adverbs: here, now, actually, presently, today, yesterday, tomorrow
- Adjectives: my, his, her, actual, past, present, future, left/right, up/down
- See lecture "A-Theory and B-Theory of Time," slide \#5

Self-Referential Sentences

- A self-referential sentences is a sentences that refers to themselves as a sentence.
- Examples:
- John is reading this sentence
- This sentence contains exactly threee erors.
- "Ice" has three letters

Self-contradictory statements (cf. Harold Evans, Newsman's English, 1972, p. 182)

- Make each pronoun agree with their antecedent
- Join clauses good, like a conjunction should.
- Verbs has to agree with their subjects.
- Don't write run-on sentences they are hard to read.
- Don't use commas, which aren't necessary.
- It's important to use your apostrophe's correctly
- Proofread your writing to see if you any words out
- The passive voice is to be avoided.
- Try to not ever split infinitives.
- Don't use no double negative.
- Correct spelling is esential.
- Don't abbrev.

Liar Paradox

This sentence is false

$L_{1}: L_{1}$ is false

- Suppose L_{1} is true; then it is as it says it is - false. So L_{1} is false. However, suppose that it is false. Well, false is just what it says it is, and a sentence that tells it the way it is is true. So L_{1} is true. So, if L_{1} is true, it is false; and if it is false, it is true. So it seems that L_{1} is neither true nor false.
- This is a paradox if we assume the principle of bivalence. This principle states that declarative sentences such as L_{1} are either true or false.

Principle of Bivalence

- Principle of Bivalence: Every declarative statement has exactly one truth value, either true or false.
- Motivation: "any non-defective representation of how things are in the world must be either accurate or inaccurate, true or false" (Sainsbury, p. 113).
- Are there counterexamples to the principle of bivalence (not counting aesthetic, theological and ethical judgments)?
- You have stopped beating your wife

Analysis of the Liar Paradox

$L_{1}: L_{1}$ is false
By the principle of bivalence, L_{1} is either true or
First, let's assume the L_{1} is true.

1) " L_{1} " is true	Assumption
2) L_{1}	(1), Disquotation
C) " L_{1} " is not true	(2), Def of L_{1}

- (1) \& (C) form a contradiction

Next, let's assume L_{1} is false

1) " L_{1} " is not true
Assumption
2) L_{1}
(1), Def of L_{1}
C) " L_{1} " is true
(2), Disquotation

- (1) \& (C) form a contradiction
- Thus we can derive a contradiction from the assumption that " L_{1} ' is true or ' L_{1} ' is not true." So we have a violation of the principle of bivalence.

Strengthened Liar

- Suppose we claim that L_{1} is neither true nor false. Let's call this claim G.
$G: L_{1}$ is neither true nor false.
- G entails that L_{1} is not false. But if L_{1} is not false, then not- L_{1} is true. And if not- L_{1} is true, then L_{1} is false. So G entails a contradiction: L_{1} is not false and L_{1} is false.
- So we cannot solve the liar paradox by claiming that L_{1} is neither true nor false.

A tongue-in-cheek liar-style puzzle:

A: This sentence contains seven words.

- Sentence A is clearly false. So its opposite ought to be true. Right?
B : This sentence does not contain seven words.
- Sentence B is the opposite of A and it is false too. How could this be?

