Chapter 4

Time Value of Money

Time Value Topics

- Future value

- Present value
- Rates of return
- Amortization

Determinants of Intrinsic Value: The Present Value Equation

Time lines show timing of cash

 flows.

Time line for a $\$ 100$ lump sum due at the end of Year 2.

Time line for an ordinary annuity of $\$ 100$ for 3 years

Time line for uneven CFs

FV of an initial $\$ 100$ after 3 years ($I=10 \%$)

$$
\begin{aligned}
& \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 10 \% & & \\
\hline
\end{array} \\
& 100 \text {---------------> } \mathrm{FV}=\text { ? }
\end{aligned}
$$

Finding FVs (moving to the right on a time line) is called compounding.

After 1 year

$$
\begin{aligned}
\mathrm{FV}_{1} & =\mathrm{PV}+\mathrm{INT}_{1}=\mathrm{PV}+\mathrm{PV}(\mathrm{I}) \\
& =\mathrm{PV}(1+\mathrm{I}) \\
& =\$ 100(1.10) \\
& =\$ 110.00
\end{aligned}
$$

After 2 years

$$
\begin{aligned}
\mathrm{FV}_{2} & =\mathrm{FV}_{1}(1+\mathrm{I}) \\
& =\$ 110(1.10) \\
& =\$ 121.00
\end{aligned}
$$

Or

$$
\begin{aligned}
\mathrm{FV}_{2} & =\mathrm{PV}(1+\mathrm{I})(1+\mathrm{I}) \\
& =\mathrm{PV}(1+\mathrm{I})^{2} \\
& =\$ 100(1.10)^{2} \\
& =\$ 121.00
\end{aligned}
$$

After 3 years

$$
\begin{aligned}
\mathrm{FV}_{3} & =\mathrm{FV}_{2}(1+\mathrm{I}) \\
& =\$ 121.00(1.10) \\
& =\$ 133.10 \\
\mathrm{Or} & \\
\mathrm{FV}_{3} & =\mathrm{FV}(1+\mathrm{I})=\mathrm{PV}(1+\mathrm{I})^{2}(1+\mathrm{I}) \\
& =\mathrm{PV}(1+\mathrm{I})^{3} \\
& =\$ 100(1.10)^{3} \\
& =\$ 133.10
\end{aligned}
$$

Using the General Formula: $F V_{N}=P V(1+I)^{N}$

Generalizing the approach from previous slides:

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{N}} & =\mathrm{PV}(1+\mathrm{I})^{\mathrm{N}} \\
\mathrm{FV}_{3} & =\$ 100(1.10)^{3} \\
& =\$ 133.10
\end{aligned}
$$

Four Ways to Find FVs

- Step-by-step approach using time line (as shown in previous slides).
- Solve the equation with a regular calculator (formula approach).
- Use a financial calculator.
- Use a spreadsheet.

Financial calculator: HP 10bII+

- Adjust display brightness: hold down ON and push + or -
- Set number of decimal places to display: Orange Shift key, then DISP key (in orange), then desired decimal places (e.g., 3).
- To temporarily show all digits, hit Orange Shift key, then DISP, then =.

HP 10bII+ (Continued)

- To permanently show all digits, hit ORANGE shift, then DISP, then . (period key).
- Set decimal mode: Hit ORANGE shift, then ./, key. Note: many non-US countries reverse the US use of decimals and commas when writing a number.

HP 10bII+: Set Time Value Parameters

- To set END (for cash flows occurring at the end of the year), hit ORANGE shift key, then BEG/END.
- To set 1 payment per period, hit 1, then ORANGE shift key, then P/YR.

Financial calculator: BAII+

- Set number of decimal places to display: $2^{\text {nd }}$ Format; use the up and down arrows to display DEC=; press 9; press ENTER
- Set AOS calculation; $2^{\text {nd }}$ Format; down arrow 4 times until you see Chn (if you see AOS then just stop and hit CE/C, you are done); $2^{\text {nd }}$ SET (AOS should display); CE/C you are done.

BAII +: Set Time Value Parameters

- To set END (for cash flows occurring at the end of the year), hit $2^{\text {nd }} B G N ; 2^{\text {nd }}$ SET will toggle between cash flows at the beginning of the year (BGN) and end of the year (END). Leave it as END.
- To set 1 payment per period, hit $2^{\text {nd }} \mathrm{P} / \mathrm{Y}$ 1 ENTER.

BAII+

- To reset TVM calculations; 2 ${ }^{\text {nd }}$ CLR TVM.
- To reset cash flow register; CF; ${ }^{\text {nd }}$ CLR Work.

Financial Calculator Solution

Financial calculators solve this equation:

$$
\mathrm{FV}_{\mathrm{N}}+\mathrm{PV}(1+\mathrm{I})^{\mathrm{N}}=0
$$

There are 4 variables. If 3 are known, the calculator will solve for the 4th.

Here's the setup to find FV

Clearing automatically sets everything to 0, but for safety enter PMT $=0$.

Set: $\mathrm{P} / \mathrm{YR}=1$, END.

Spreadsheet Solution

- Use the FV function: see spreadsheet in Ch28 Mini Case.xls

$$
\begin{aligned}
\text { - } & =\mathrm{FV}(\mathrm{I}, \mathrm{~N}, \mathrm{PMT}, \mathrm{PV}) \\
& =\mathrm{FV}(0.10,3,0,-100)=133.10
\end{aligned}
$$

What's the PV of $\$ 100$ due in 3 years if I/YR = 10\%?

Finding PVs is discounting, and it's the reverse of compounding.

PV = ? -------------------- 100

Solve $\mathrm{FV}_{\mathrm{N}}=\mathrm{PV}(1+\mathrm{I})^{\mathrm{N}}$ for PV

$P V=\$ 100\left(\frac{1}{1.10}\right)^{3}$
$=\$ 100(0.7513)=\$ 75.13$

Financial Calculator Solution

Either PV or FV must be negative. Here PV $=-75.13$. Put in $\$ 75.13$ today, take out \$100 after 3 years.

Spreadsheet Solution

- Use the PV function: see spreadsheet in Ch04 Mini Case.xls

$$
\begin{aligned}
& \text { - }=\operatorname{PV}(I, N, P M T, F V) \\
& =P V(0.10,3,0,100)=-75.13
\end{aligned}
$$

Finding the Time to Double

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
0 & 1 & 2 \\
\hline & 20 \% & \\
\hline
\end{array} \\
& \text {-1 } \\
& \mathrm{FV}=\mathrm{PV}(1+\mathrm{I})^{\mathrm{N}}
\end{aligned}
$$

Continued on next slide

Time to Double (Continued)

$$
\begin{aligned}
\$ 2 & =\$ 1(1+0.20)^{\mathrm{N}} \\
(1.2)^{\mathrm{N}} & =\$ 2 / \$ 1=2 \\
\mathrm{NLN}(1.2) & =\operatorname{LN}(2) \\
\mathrm{N} & =\operatorname{LN}(2) / \operatorname{LN}(1.2) \\
\mathrm{N} & =0.693 / 0.182=3.8
\end{aligned}
$$

Financial Calculator Solution

Spreadsheet Solution

- Use the NPER function: see spreadsheet in Ch04 Mini Case.xls
- = NPER(I, PMT, PV, FV)
- $=\operatorname{NPER}(0.10,0,-1,2)=3.8$

Finding the Interest Rate

Financial Calculator

Spreadsheet Solution

- Use the RATE function:

. = RATE(N, PMT, PV, FV)

- $=\operatorname{RATE}(3,0,-1,2)=0.2599$

Ordinary Annuity vs. Annuity Due

Ordinary Annuity

What's the FV of a 3-year ordinary annuity of $\$ 100$ at 10\%?

FV Annuity Formula

- The future value of an annuity with N periods and an interest rate of I can be found with the following formula:

$$
\begin{aligned}
& =\operatorname{PMT} \frac{(1+\mathrm{I})^{N}-1}{\mathrm{I}} \\
& =\$ 100 \frac{(1+0.10)^{3}-1}{0.10}=\$ 331
\end{aligned}
$$

Financial Calculator Formula for Annuities

- Financial calculators solve this equation:
- $\operatorname{PV}(1+I)^{\mathrm{N}}+\operatorname{PMT} \frac{(1+\mathrm{I})^{\mathrm{N}}-1}{\mathrm{I}}+\mathrm{FV}_{\mathrm{N}}=\mathbf{0}$
- There are 5 variables. If 4 are known, the calculator will solve for the 5th.

Financial Calculator Solution

Have payments but no lump sum PV, so enter 0 for present value.

Spreadsheet Solution

- Use the FV function: see spreadsheet.

$$
\begin{aligned}
& =\quad=\mathrm{FV}(\mathrm{I}, \mathrm{~N}, \mathrm{PMT}, \mathrm{PV}) \\
& =\quad=\mathrm{FV}(0.10,3,-100,0)=331.00
\end{aligned}
$$

What's the PV of this ordinary annuity?

PV Annuity Formula

- The present value of an annuity with N periods and an interest rate of I can be found with the following formula:

$$
\begin{aligned}
& =\operatorname{PMT}\left(\frac{1}{\mathrm{I}}-\frac{1}{\mathrm{I}(1+\mathrm{I})^{\mathrm{N}}}\right) \\
& =\$ 100\left(\frac{1}{0.1}-\frac{1}{0.1(1+0.1)^{3}}\right)=\$ 248.69
\end{aligned}
$$

Financial Calculator Solution

Have payments but no lump sum FV, so enter 0 for future value.

Spreadsheet Solution

- Use the PV function: see spreadsheet.

$$
\begin{aligned}
\text { - } & =\operatorname{PV}(\mathrm{I}, \mathrm{~N}, \mathrm{PMT}, \mathrm{FV}) \\
& =\operatorname{PV}(0.10,3,100,0)=-248.69
\end{aligned}
$$

Find the FV and PV if the annuity were an annuity due.

PV and FV of Annuity Due vs. Ordinary Annuity

- PV of annuity due:
- = (PV of ordinary annuity) (1+I)
- = (\$248.69) $(1+0.10)=\$ 273.56$
- FV of annuity due:
- = (FV of ordinary annuity) (1+I)
- = (\$331.00) ($1+0.10$) = \$364.10

PV of Annuity Due: Switch from "End" to "Begin"

BEGIN Mode

INPUTS
OUTPUT

-273.55

FV of Annuity Due: Switch from "End" to "Begin"

BEGIN Mode

INPUTS

OUTPUT

FV
-364.10

Excel Function for Annuities

Due

- Change the formula to:
- = PV(0.10,3,-100,0,1)
- The fourth term, 0 , tells the function there are no other cash flows. The fifth term tells the function that it is an annuity due. A similar function gives the future value of an annuity due:
- = $\operatorname{FV}(0.10,3,-100,0,1)$

What is the PV of this uneven cash flow stream?

Financial calculator: HP 10bII+

- Clear all: Orange Shift key, then C All key (in orange).
- Enter number, then hit the CFj key.
- Repeat for all cash flows, in order.
- To find NPV: Enter interest rate (I/YR). Then Orange Shift key, then NPV key (in orange).

Financial calculator: HP 10bII+ (more)

- To see current cash flow in list, hit RCL CFj CFj
- To see previous CF, hit RCL CFj To see subsequent CF, hit RCL CFj +
- To see CF 0-9, hit RCL CFj 1 (to see CF 1). To see CF 10-14, hit RCL CFj . (period) 1 (to see CF 11).

Financial calculator: BAII +

- Clear all cash flows: CF; $2^{\text {nd }}$ CLR Work.
- CFO displayed. Enter number, then hit the ENTER key.
- Hit the down arrow to display C01. Enter number, hit ENTER.
- F01 displayed. Usually just hit 1 ENTER. If you have several cash flows that are all the same, then use F01 to say how many you have.

Financial calculator: BAII +

- Repeat for all cash flows, in order.
- To find NPV: Hit NPV; I = will display. Enter interest rate (as a percentage, so enter 10 for 10\%) ENTER; Down Arrow; Displays NPV =; hit CPT and the NPV will display.

Financial calculator: BAII +

(more)

- To see current cash flow in list, hit CF
- Scroll up or down using the up and down arrows.
- Input in "CFLO" register:
- CFO = 0
- CF1 = 100
- CF2 = 300
- CF3 = 300
- CF4 = -50
- Enter I/YR = 10, then press NPV button to get NPV $=$ 530.09. (Here NPV $=$ PV.)

Excel Formula in cell A3: =NPV(10\%,B2:E2)

	A	B	C	D	E
1	0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
2		$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{3 0 0}$	$\mathbf{- 5 0}$
3	$\$ \mathbf{5 3 0 . 0 9}$				
4					
5					

Nominal rate ($\mathrm{I}_{\mathrm{NOM}}$)

- Stated in contracts, and quoted by banks and brokers.
- Not used in calculations or shown on time lines
- Periods per year (M) must be given.
- Examples:
. 8\%; Quarterly
- 8\%, Daily interest (365 days)

Periodic rate ($\mathrm{I}_{\text {PER }}$)

- $\mathrm{I}_{\text {PER }}=\mathrm{I}_{\text {NOM }} / \mathrm{M}$, where M is number of compounding periods per year. $M=4$ for quarterly, 12 for monthly, and 360 or 365 for daily compounding.
- Used in calculations, shown on time lines.
- Examples:
- 8% quarterly: $\mathrm{I}_{\mathrm{PER}}=8 \% / 4=2 \%$.
- 8% daily (365): $\mathrm{I}_{\mathrm{PER}}=8 \% / 365=0.021918 \%$.

The Impact of Compounding

- Will the FV of a lump sum be larger or smaller if we compound more often, holding the stated I\% constant?
- Why?

The Impact of Compounding (Answer)

- LARGER!
- If compounding is more frequent than once a year--for example, semiannually, quarterly, or daily--interest is earned on interest more often.

FV Formula with Different Compounding Periods

$\mathrm{FV}_{\mathrm{N}}=\mathrm{PV}\left(1+\frac{\mathrm{I}_{\mathrm{NOM}}}{\mathrm{M}}\right)^{\mathrm{MN}}$

$\$ 100$ at a 12% nominal rate with semiannual compounding for 5 years

$$
\begin{aligned}
\mathrm{FV}_{N} & =\mathrm{PV}\left(1+\frac{\mathrm{I}_{\mathrm{NOM}}}{\mathrm{M}}\right)^{\mathrm{MN}} \\
\mathrm{FV}_{5 S} & =\$ 100\left(1+\frac{0.12}{2}\right)^{2 \times 5} \\
& =\$ 100(1.06)^{10}=\$ 179.08
\end{aligned}
$$

FV of $\$ 100$ at a 12% nominal rate for 5 years with different compounding

FV(Ann.) $=\$ 100(1.12)^{5}$
= \$176.23
FV(Semi.) $=\$ 100(1.06)^{10}$
FV(Quar.) $=\$ 100(1.03)^{20}$
= \$179.08
= \$180.61
FV (Mon.) $=\$ 100(1.01)^{60}$
= \$181.67
FV(Daily) $=\$ 100(1+(0.12 / 365))^{(5 \times 365)}=\$ 182.19$

Effective Annual Rate (EAR = EFF\%)

- The EAR is the annual rate that causes PV to grow to the same FV as under multi-period compounding.

Effective Annual Rate Example

- Example: Invest \$1 for one year at 12\%, semiannual:

$$
\begin{aligned}
& \mathrm{FV}=\mathrm{PV}\left(1+\mathrm{I}_{\mathrm{NOM}} / \mathrm{M}\right)^{\mathrm{M}} \\
& \mathrm{FV}=\$ 1(1.06)^{2}=\$ 1.1236 .
\end{aligned}
$$

- EFF\% = 12.36\%, because $\$ 1$ invested for one year at 12% semiannual compounding would grow to the same value as $\$ 1$ invested for one year at 12.36% annual compounding.

Comparing Rates

- An investment with monthly payments is different from one with quarterly payments. Must put on EFF\% basis to compare rates of return. Use EFF\% only for comparisons.
- Banks say "interest paid daily." Same as compounded daily.

EFF\% for a nominal rate of 12\%, compounded semiannually

$$
\begin{aligned}
\text { EFF\% } & =\left(1+\frac{\mathrm{I}_{\text {NOM }}}{\mathrm{M}}\right)^{\mathrm{M}}-1 \\
& =\left(1+\frac{0.12}{2}\right)^{2}-1 \\
& =(1.06)^{2}-1.0 \\
& =0.1236=12.36 \% .
\end{aligned}
$$

Finding EFF with HP10BII

- Type in nominal rate, then Orange Shift key, then NOM\% key (in orange).
- Type in number of periods, then Orange Shift key, then P/YR key (in orange).
- To find effective rate, hit Orange Shift key, then EFF\% key (in orange).

EAR (or EFF\%) for a Nominal Rate of of 12%

$E A R_{\text {Annual }}$
$=12 \%$.
$E A R_{Q}$

$$
=(1+0.12 / 4)^{4}-1=12.55 \%
$$

$E A R_{M}$

$$
=(1+0.12 / 12)^{12}-1=12.68 \%
$$

$E A R_{D(365)}$

$$
=(1+0.12 / 365)^{365}-1=12.75 \%
$$

Can the effective rate ever be equal to the nominal rate?

- Yes, but only if annual compounding is used, i.e., if $\mathrm{M}=1$.
- If $\mathrm{M}>1$, EFF\% will always be greater than the nominal rate.

When is each rate used?

$\mathrm{I}_{\text {Noм }}$: Written into contracts, quoted by banks and brokers. Not used in calculations or shown on time lines.

When is each rate used? (Continued)

$\mathrm{I}_{\text {PER }}$: Used in calculations, shown on time lines.

If $\mathrm{I}_{\text {NOM }}$ has annual compounding, then $\mathrm{I}_{\text {PER }}=\mathrm{I}_{\text {NOM }} / 1=\mathrm{I}_{\text {NOM }}$.

When is each rate used? (Continued)

- EAR (or EFF\%): Used to compare returns on investments with different payments per year.
- Used for calculations if and only if dealing with annuities where payments don't match interest compounding periods.

Amortization

Construct an amortization schedule for a $\$ 1,000,10 \%$ annual rate loan with 3 equal payments.

Step 1: Find the required payments.

Step 2: Find interest charge for Year 1.

$\mathrm{INT}_{\mathrm{t}}=$ Beg bal $_{\mathrm{t}}(\mathrm{I})$

$\mathrm{INT}_{1}=\$ 1,000(0.10)=\$ 100$

Step 3: Find repayment of principal in Year 1.

Repmt $=$ PMT - INT $=\$ 402.11-\$ 100$ = \$302.11

Step 4: Find ending balance after Year 1.

End bal = Beg bal - Repmt $=\$ 1,000-\$ 302.11=\$ 697.89$

Repeat these steps for Years 2 and 3 to complete the amortization table.

Amortization Table

YEAR	BEG BAL	PMT	INT	PRIN PMT	END BAL
1	$\$ 1,000$	$\$ 402$	$\$ 100$	$\$ 302$	$\$ 698$
2	698	402	70	332	366
3	366	402	37	366	0
TOT		$1,206.34$	206.34	1,000	

Interest declines because outstanding balance declines.

Amortization

- Amortization tables are widely used--for home mortgages, auto loans, business loans, retirement plans, and more. They are very important!
- Financial calculators (and spreadsheets) are great for setting up amortization tables.

Fractional Time Periods

- On January 1 you deposit $\$ 100$ in an account that pays a nominal interest rate of 11.33463%, with daily compounding (365 days).
- How much will you have on October 1, or after 9 months (273 days)? (Days given.)

Convert interest to daily rate

$I_{\text {PER }}=11.33463 \% / 365$ $=0.031054 \%$ per day

Find FV

$\mathrm{FV}_{273}=\$ 100(1.00031054)^{273}$
 $=\$ 100$ (1.08846) = $\$ 108.85$

Calculator Solution

$$
\begin{aligned}
\mathrm{I}_{\text {PER }} & =\mathrm{I}_{\text {NOM }} / \mathrm{M} \\
& =11.33463 / 365 \\
& =0.031054 \text { per day. }
\end{aligned}
$$

INPUTS

OUTPUT

FV 108.85

Non-matching rates and periods

- What's the value at the end of Year 3 of the following CF stream if the quoted interest rate is 10%, compounded semiannually?

Time line for non-matching rates and periods

Non-matching rates and periods

- Payments occur annually, but compounding occurs each 6 months.
- So we can't use normal annuity valuation techniques.

1st Method: Compound Each

CF

$\mathrm{FVA}_{3}=\$ 100(1.05)^{4}+\$ 100(1.05)^{2}+\$ 100$ $=\$ 331.80$

2nd Method: Treat as an annuity, use financial calculator

Find the EFF\% (EAR) for the quoted rate:

Use EAR = 10.25\% as the annual rate in calculator.

What's the PV of this stream?

Comparing Investments

- You are offered a note that pays $\$ 1,000$ in 15 months (or 456 days) for $\$ 850$. You have $\$ 850$ in a bank that pays a 6.76649% nominal rate, with 365 daily compounding, which is a daily rate of 0.018538% and an EAR of 7.0%. You plan to leave the money in the bank if you don't buy the note. The note is riskless.
- Should you buy it?

Daily time line

$I_{P E R}=\quad 0.018538 \%$ per day.
 -850

 365
 . \cdot
 1,000

Three solution methods

- 1. Greatest future wealth: FV

- 2. Greatest wealth today: PV
- 3. Highest rate of return: EFF\%

1. Greatest Future Wealth

Find FV of $\$ 850$ left in bank for 15 months and compare with note's FV = \$1,000.

$$
\begin{aligned}
F V_{\text {Bank }} & =\$ 850(1.00018538)^{456} \\
& =\$ 924.97 \text { in bank. }
\end{aligned}
$$

Buy the note: $\$ 1,000>\$ 924.97$.

Calculator Solution to FV

$\mathrm{I}_{\text {PER }}=\mathrm{I}_{\text {Nom }} / \mathrm{M}$

= 6.76649/365
$=0.018538$ per day.
INPUTS

I/YR

2. Greatest Present Wealth

Find PV of note, and compare with its $\$ 850$ cost:

$$
\begin{aligned}
\mathrm{PV} & =\$ 1,000 /(1.00018538)^{456} \\
& =\$ 918.95
\end{aligned}
$$

Buy the note: $\$ 918.95>\$ 850$

Financial Calculator Solution

PV of note is greater than its $\$ 850$ cost, so buy the note. Raises your wealth.

3. Rate of Return

Find the EFF\% on note and compare with 7.0% bank pays, which is your opportunity cost of capital:
 $$
\begin{aligned} & \mathrm{FV}_{\mathrm{N}}=\mathrm{PV}(1+\mathrm{I})^{\mathrm{N}} \\ & \$ 1,000=\$ 850(1+\mathrm{I})^{456} \\ & \text { Now we must solve for } \mathrm{I} . \end{aligned}
$$

Calculator Solution

Convert \% to decimal:

Decimal $=0.035646 / 100=0.00035646$. EAR $=E F F \%=(1.00035646)^{365}-1$

$$
=13.89 \% .
$$

Using interest conversion

$\mathrm{P} / \mathrm{YR}=365$
NOM\% $=0.035646(365)=13.01$
EFF\% = 13.89

Since 13.89% > 7.0\% opportunity cost, buy the note.

