
70 IEEE SOFTWARE  | PUBLISHED BY THE IEEE COMPUTER SOCIET Y  074 0 -74 5 9 /12 / $ 31. 0 0  ©  2 012  I E E E

SOFTWARE IS UBIQUITOUS. It runs 

corporations, governments, and mar-

kets, as it has for decades, but it’s also 

central to personal and social commu-

nication, entertainment, travel, and lei-

sure. Software is no longer a tool lim-

ited to the 40-hour work week; it’s a 

service consumed at work, home, and 

play. It isn’t a stretch to say that users 

not only depend on software but also 

fall in love with it. Developing beauti-

ful and engaging software creates an 

emotional bond between your applica-

tion and its users.

But how many users have ever fallen 

in love with a test plan? Of all the sup-

porting artifacts of software develop-

ment (speci�cations, designs, product 

plans, and so forth), the lowly test plan 

is probably the hardest to love. Test 

plans are written, reviewed, and often 

left to rot in place as the hustle and bus-

tle of software development progresses 

and shifts the focus—rightly so, in my 

opinion—to the care and feeding of 

source code. After all, the source code 

becomes the product that users covet. 

Spending a moment more on a test plan 

than is absolutely necessary is a mo-

ment taken away from making the code 

the best it can be. 

Writing voluminous test plans may 

be a prescribed burden in the life of 

software engineers working in regu-

lated industries or dealing with safety-

critical issues. But for the compressed 

shipping cycles of modern mobile and 

Web apps, we need something simpler. 

A solution that compresses the time 

spent developing and maintaining a test 

plan might even have useful takeaways 

for those who require more rigor and 

adherence to standards.1

I See Dead Test Plans
When I �rst arrived at Google, my ex-

perience suggested that test plans were 

created with an uncritical eye. They’re 

simply expected. The �rst question 

asked when the subject of testing comes 

up is, “What’s the plan?” Then inevi-

tably someone accepts the task of cre-

ating it. The process of doing so cre-

ates value: writing the test plan forces 

us to think through testing problems 

and potential solutions. But the actual 

value is in the test plan activity and 

not the test plan artifact, which often 

sits unused once development starts in 

earnest. Test planning is an incredibly 

useful exercise, but the plan itself is of 

questionable value. Keeping a test plan 

up to date through all the various re-

quirements, speci�cation, and product 

changes is simply of too little value to 

be worth anyone’s time. 

As someone who’s worked in the 

testing �eld for much of my career, I 

wanted to �nd out why test plans die 

so prematurely. If test planning is truly 

of little value, should we even bother? 

Why grant tenure to a low-value pro-

cess simply because it’s familiar? And 

if test planning is valuable, how do we 

get to that value quickly and ef�ciently 

without generating an artifact that’s 

not worth maintaining? I wanted to re-

think test planning from the ground up.

A theoretical exercise was outside 

the skill set of my engineering team. 

Asking them to sit around and brain-

storm about why our test plans were 

dying would have produced scant in-

sight. Instead, I took a more aggressive 

approach, using a very industry-ori-

ented technique: I gave a group of peo-

ple who report to me a nebulous task 

with unrealistic time constraints.

Ten Minutes and No More
I chose my directions carefully: 

“Build a test plan for Google App En-

gine; you have 10 minutes.” Such a 

directive has no ambiguity. The peo-

The 10-Minute 

Test Plan
James A. Whittaker, Google

// Test plans are perhaps the least appreciated of all 

supporting software development artifacts, so let’s spend 

as little time as possible on them—say, 10 minutes. //

FEATURE: SOFTWARE TESTING



 NOVEMBER/DECEMBER 2012  | IEEE SOFTWARE  71

ple I asked to participate in this ex-

periment were used to taking work re-

quests from me. Test planning was an 

activity they understood. App Engine 

was a product they understood. As I 

closed the door, sequestering the team 

in their conference room, there were 

no questions to ask.

Ten minutes later, I opened the door 

and there was, unsurprisingly, no test 

plan. The excuses were predictable: 

“We didn’t think you really meant 10 

minutes.” “That isn’t enough time to 

even document our intent.” “Dude, 

seriously?”

I reset the clock but changed the ap-

plication: “10 minutes, Chrome Web 

Store…. Go!”

You get the idea. Every 10 minutes, 

I changed the application target, but 

the task remained the same: build a 

test plan. As the minutes ticked by, my 

team got the message. They quickly dis-

carded any idea of describing the prob-

lem, the application, or �nally, any-

thing at all. There wasn’t enough time. 

They set aside prose in favor of bul-

leted lists. They learned to ignore any 

information that wasn’t relevant to test-

ing—meaning that if it wouldn’t appear 

in an important test case, ignore it. If it 

didn’t affect testing in some fundamen-

tally important way, leave it out. By the 

�fth attempt, they were able to get 80 

percent through the test-planning pro-

cess in 30 minutes or less, documenta-

tion included. Not exactly a 10-minute 

test plan, but a success nonetheless. We 

boiled test planning down to its very 

essence. 

Attributes, Components, 
and Capabilities
In all the documentation and notes cre-

ated during both the false-start and the 

80-percent-complete test plans, three 

requirement categories surfaced.

First, what application properties 

need veri�cation? App Engine needed 

to be available, secure, and responsive. 

Chrome Web Store needed to be in-

tuitive, appealing, and worthwhile. In 

other words, the adjectives and adverbs 

that describe why a user would use the 

service in the �rst place are an impor-

tant part of the planning process. They 

represent the characteristics we’re try-

ing to validate during testing. We must 

understand the system properties that 

need veri�cation. 

Second, what parts of the applica-

tion need veri�cation? App Engine 

has components for creating, hosting, 

and scaling applications. Chrome Web 

Store has a data store, discovery en-

gine, and download manager. These 

are the nouns that name components of 

the system under test. We must know 

the parts of the application that require 

testing attention. 

Finally, what purpose does the ap-

plication serve for users? App Engine 

lets users write code, serve application 

instances, and scale to meet demand. In 

other words, the verbs describing what 

capabilities users receive are the actions 

that eventually get translated into test 

cases. We must know what actions the 

system performs. 

We experimented with various com-

binations of these three properties and 

settled on a process called ACC: attri-

butes (the adjectives and adverbs), com-

ponents (the nouns), and capabilities 

(the verbs), to be documented in that 

order and, we hoped, in 10 minutes or 

less. ACC has seven guiding principles:

•	 Avoid	 prose	 and	 favor	 bulleted	
lists. Not all testers possess the 

skills to adequately capture a prod-

uct’s purpose or testing needs in 

narrative form. Prose can be hard 

to read and easy to misinterpret.

•	 Don’t	 bother	 selling. A test plan 

isn’t a marketing document or a 

place to talk about the importance 

of a product’s market niche or how 

cool it is. Test plans aren’t for cus-

tomers or analysts; they’re for 

engineers. 

•	 No	 昀氀uff. Test plans aren’t school 

term projects with speci�c length 

expectations. Bigger is not better. 

A plan’s size is related to the size 

of the testing problem, not the au-

thor’s propensity to write. 

•	 If	 it	 isn’t	 important	 and	 action-
able,	don’t	put	it	in	the	plan. Not a 

single word should garner a “don’t 

care” reaction from a potential 

stakeholder.

•	 Make	 it	 昀氀ow. Each section should 

expand on earlier sections so that 

readers can stop at any time and 

have a clear picture of the product’s 

functionality. If they need more de-

tail, they just continue reading. 

•	 Guide	 a	 tester’s	 thinking. A good 

planning process helps a tester 

think through functionality and 

test needs and so leads logically 

from higher-level concepts to lower-

level details that engineers can im-

plement directly. 

•	 The	 outcome	 should	 be	 test	 cases. 
By the time the plan is complete, 

Every 10 minutes, I changed  

the application target, but the task 

remained the same: build a test plan. 



72 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TESTING

it should clarify not just what test-

ing needs to be done but also how 

to write the test cases. A plan that 

doesn’t lead directly to tests is a 

waste of time.

This last point is crucial. If the test 

plan doesn’t have enough detail to tell 

us what test cases we need to write, it 

hasn’t served its primary purpose of 

helping test the application we’re build-

ing. Test planning should put us in a 

position to know exactly what tests 

must be written. ACC accomplishes 

this by guiding the planner through 

three views of a product: its attributes, 

components, and capabilities.

A Is for Attributes

Attributes describe why the product is 

important to users and to the business. 

Why are we building this thing? What 

core value does it deliver? Why is it in-

teresting to customers? We’re not look-

ing to either justify or explain these 

things, only to label them. Presumably, 

the product planners have done their 

job in coming up with a product that 

will matter in the marketplace. From a 

testing perspective, we just need to cap-

ture and label attributes so we can en-

sure they’re accounted for when we test 

the product. 

Attributes are the qualities and char-

acteristics that promote the product 

and distinguish it from the competi-

tion. In a way, they explain why people 

would choose to use your product over 

a competitor’s. For example, Chrome 

is designed to be fast, secure, stable, 

and elegant, so these are the attributes 

ACC is trying to document. Eventually, 

we want to attach test cases to the at-

tributes, so we know how much testing 

we’ve done to demonstrate their mani-

festation in the product. 

Typically, a product manager will 

have a hand in narrowing down the 

list of system attributes. Testers often 

get this “list” by reading the product 

requirements document or the team’s 

vision/mission statement or even by 

simply listening to a salesperson de-

scribe the system to a prospective cus-

tomer. Indeed, at Google, we �nd that 

salespeople and product evangelists are 

an excellent source of attributes. Just 

imagine back-of-the-box advertising 

or think about how the product would 

be pitched, and you’re getting the right 

mindset to list the attributes.

Some tips on coming up with attri-

butes for your own projects:

FIGURE 1. “Welcome to Google Sites” screenshot. Most of the product attributes are listed under “Quick facts.” Many end-user applications 

include similar pages that effectively identify attributes for testing.



 NOVEMBER/DECEMBER 2012  | IEEE SOFTWARE  73

•	 Keep	 them	 simple. If it’s tak-

ing more than a few minutes, you 

don’t understand the product well 

enough.

•	 Keep	 them	 accurate. Make sure 

they come from documentation or 

marketing information that your 

team already accepts as truth.

•	 Keep	 moving. Don’t worry if you 

missed something. If it’s not obvi-

ous later that you missed some-

thing, it probably wasn’t that 

important. 

•	 Keep	 it	 short. No more than a 

dozen attributes is a good target. 

We boiled Chrome’s operating sys-

tem down to 12 key attributes and, 

in retrospect, should have short-

ened that list to eight or nine.

As an example, consider the attri-

butes for the Google Sites product, 

which is a freely available applica-

tion for building a shared community 

website. Google Sites, as you’ll �nd 

with many end-user applications, is 

kind enough to give you most of its 

attributes in its own documenta-

tion, as Figure 1 shows in the “Quick 

facts” list. 

Indeed, most applications have some 

sort of “Getting started” page or sales-

oriented literature that will often do the 

work of identifying attributes for you. 

If they don’t, then talking to a salesper-

son or, better yet, watching a sales call 

or demo, will get you the information 

you need.

At Google, we use any number of 

tools for documenting ACC, from 

speci�cation-like documents to spread-

sheets to a custom tool built by some 

enterprising engineers called Google 

Test Analytics (gTA). Figure 2 shows 

the attributes for Google Sites as docu-

mented in gTA.

C Is for Components

The next enumeration targets are 

nouns—the component building blocks 

that together constitute a system and 

implement the attributes. Components 

are the shopping cart and the checkout 

feature for an online store. They’re the 

formatting and printing features of a 

word processor. They’re the core chunks 

of code that make the software what it 

is. Indeed, they’re the very things that 

testers are tasked with testing.

Components are generally easy to 

identify and often already cast in a de-

sign document somewhere. For large 

systems, they’re the big boxes in an ar-

chitectural diagram and often appear 

in bug database labels or get called out 

explicitly in project pages and docu-

mentation. For smaller projects, they’re 

the code classes and objects that devel-

opers are creating. You’ll get the list 

without having to do much else if you 

just ask each developer, “What compo-

nent are you working on?”

As with attributes, the level of detail 

in identifying product components is 

critical. Too much detail becomes over-

whelming and brings diminishing re-

turns. Too little detail, and there’s sim-

ply no reason to bother in the �rst place. 

Keep the list small: 10 components are 

good, 20 are probably too many un-

less the system is very large. It’s okay 

to leave minor things out: if they’re mi-

nor, then they’re either part of another 

component or lacking enough end-user 

value to focus on them. 

Indeed, you should be able to enu-

merate both attributes and components 

in minutes. If you’re struggling to come 

up with components, then you’re not 

familiar enough with your product and 

FIGURE 2. Google Sites attributes as documented in the Google Test Analytics (gTA) 

tool. “Searchable,” “sharing,” “quick,” and so forth are the actual attributes we selected to 

demonstrate in subsequent testing.



74 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TESTING

need to spend some time using it to get 

quickly to a power-user level. Any ac-

tual power user should be able to list 

attributes immediately, and any project 

insider with access to the source code 

and its documentation should be able 

to list the components quickly as well. 

Finally, don’t worry about complete-

ness. The whole ACC process is based 

on doing something quickly and then 

iterating as you go. If you miss an at-

tribute, you might discover it as you’re 

listing the components. ACC’s capabili-

ties process should shake out any attri-

butes or components you missed earlier. 

Figure 3 shows how Google Sites 

components are documented in gTA.

C Is for Capability

Capabilities are the system’s verbs. 

They represent the actions the system 

performs in response to user inputs. 

Indeed, users choose your software be-

cause they want some speci�c function-

ality that it provides.

Chrome, for example, has capabili-

ties to render a webpage, play a Flash 

�le, synchronize between clients, and 

download a document. These capa-

bilities and many more represent the 

browser’s full functionality. A shop-

ping app, on the other hand, has ca-

pabilities to perform a product search 

and complete a sale. If an application 

can perform a task, then the task is one 

of its capabilities.

Capabilities lie at the intersection 

of attributes and components. Compo-

nents perform some function to satisfy 

a product attribute and the result gives 

the user a capability. Chrome renders a 

webpage fast and plays a Flash �le se-

curely. If your product does something 

that isn’t covered by an attribute-com-

ponent intersection, it probably war-

rants raising the question of why you’re 

bothering to include it in the product. 

A capability that doesn’t serve a core 

product value sounds like fat that you 

can trim—either that or an explanation 

for the capability exists but you don’t 

understand it. Not understanding your 

product is unacceptable.

Here are some example capabilities 

for an online shopping site: 

•	 Add/remove	 items	 to/from	 the	
shopping	 cart. A cart component 

intersects with an intuitive UI 

attribute.

•	 Collect	credit	card	and	veri昀椀cation	
data. The cart component meets the 

convenient and integrated (with the 

payment system) attributes. 

•	 Processes	 monetary	 transactions	
using	HTTPS. The cart component 

meets the secure attribute. 

•	 Provide	 suggestions	 to	 shoppers	
based	on	the	products	they’re	view-
ing.	 The search component meets 

the convenient attribute. 

•	 Calculate	shipping	cost. The FedEx 

integration component meets the 

fast and secure attributes.

•	 Display	 available	 inventory. The 

search component meets the conve-

nient and accurate attributes.

•	 Defer	 a	 purchase	 for	 a	 later	 date. 
The cart component intersects with 

the convenient attribute. 

•	 Search	 for	 items	 by	 keyword,	
stock-keeping	 unit,	 and	 category. 
The search component intersects 

with the convenient and accurate 

attributes. (In general, we prefer 

treating each search category as a 

separate capability.)

Obviously, the capabilities list can 

be long. If you feel as if you’re listing 

FIGURE 3. Google Sites components as documented in gTA. “Nav bar,” “Sitemap,” and so 

forth are blocks of actual code modules. Each of these components is visible from the Sites UI 

or immediately available in speci�cation documents. 



 NOVEMBER/DECEMBER 2012  | IEEE SOFTWARE  75

everything you could test, then you’re 

getting the hang of ACC—to list, 

quickly and succinctly, the most impor-

tant system capabilities that need veri�-

cation to be in working order.

Capabilities are generally user-ori-

ented and written to convey a user’s 

view of what the system does. Whereas 

brevity rules the attribute or compo-

nent ACC stages, capabilities should 

describe everything the system can do. 

They’re far more numerous than attri-

butes and components, and their num-

ber increases with an application’s fea-

ture richness and complexity. Smaller 

applications I’ve worked on at Google 

have dozens of capabilities, and the 

more complicated systems tend to have 

hundreds (Chrome OS has over 300, 

for example). 

Testability

Most importantly, capabilities must 

be testable. They’re verbs because they 

require action on our part—speci�-

cally, to write test cases that will deter-

mine whether each capability is imple-

mented correctly and whether the user 

will �nd the experience useful. This is 

the primary reason to write them in an 

active voice.

Capabilities aren’t meant to be test 

cases that contain all the information 

necessary to run as actual tests. They 

don’t require exact input values and 

data. If the capability is to let users 

shop, the test case will specify what they 

shop for. Capabilities are general con-

cepts of actions the software can take or 

a user can request. They imply tests and 

values but aren’t tests themselves.

Continuing with the Google Sites 

example, Figure 4 shows a grid with at-

tributes across the x-axis and compo-

nents across the y-axis. This is the way 

ACC links capabilities back to attri-

butes and components. The large num-

ber of empty squares is typical because 

not every component has an impact on 

every attribute. For example, only some 

of Chrome’s components are respon-

sible for making it fast or secure; the 

others will have blanks at the attribute 

intersection points, representing no im-

pact and therefore no need to test this 

particular attribute-component pair.

Each row or column in the capabili-

ties grid represents a slice of function-

ality that’s related in some fashion. A 

single row or column is a good way to 

break the application’s functionality 

FIGURE 4. Capabilities grid. The numeric value indicates the number of capabilities that a particular component (y-axis) provides to satisfy a 

particular attribute (x-axis). The higher the number, the more test points for that intersection. Blank entries indicate no attribute-component link 

and therefore no test requirement.



76 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE TESTING

into testable sessions. A test manager 

might assign each row to a separate test 

team or have a bug bash to really hit 

a row or column hard. The grid also 

reveals targets for exploratory testing 

and, when each exploratory tester takes 

a different row or column, helps man-

age overlap and improve coverage. 

The numeric values in Figure 4 rep-

resent the number of capabilities pro-

vided by the component on that row 

to satisfy the attribute in that column. 

The higher the number, the more test 

points for that particular intersection. 

For example, the page-view compo-

nent addresses the sharing attribute in 

three capabilities:

•	 Make the document accessible to 

collaborators.

•	 Share page-management duties 

with a collaborator.

•	 View collaborator position within a 

page.

These capabilities must be tested for 

the page-view/sharing pair. We can ei-

ther write test cases for them directly 

or test a combination of capabilities by 

combining them into a larger use case 

or test scenario.

Documenting Capabilities

Writing good capabilities requires 

some discipline. Three properties 

we’ve found to be useful include, �rst, 

writing a capability as an action that 

conveys the sense of the user accom-

plishing some activity, as in the page-

view/sharing examples. 

Second, a capability should pro-

vide enough guidance for a tester to 

understand the variables involved 

in writing test cases for the behav-

ior it describes. For example, “Pro-

cess monetary transactions using 

HTTPS” requires the tester to under-

stand what types of monetary trans-

actions the system can perform and 

to define a mechanism that validates 

whether the transaction occurs over 

HTTPS. Obviously, there’s a great 

deal of work to be done here. If you 

believe that some monetary transac-

tions might be missed by, say, a new 

tester on the team, then you need to 

replicate this capability to expose 

the various transaction types; if not, 

then the general level of abstraction is 

good enough. 

Likewise, if HTTPS is something 

the team understands well, this capa-

bility is �ne as it’s worded. Capabilities 

are supposed to be abstract, so don’t 

fall into the trap of trying to document 

every detail as a capability. Leave it to 

the test cases or to the exploratory tes-

ters themselves to provide that level of 

detail. (Leaving such variations to the 

tester also creates variety in how ca-

pabilities are interpreted and cast into 

actual test cases, which in turn trans-

lates to better coverage.)

Finally, a capability should be 

composable with other capabilities. 

In fact, a user story2 or use case3 (or 

whatever terminology you may prefer) 

should be describable in a series of 

capabilities. If you can’t write a user 

story with only the existing capabili-

ties, then either some capabilities are 

missing or they’re written at too high 

an abstraction level. 

Transforming a set of capabilities 

into user stories is an optional interim 

step that can add a great deal of �exi-

bility to testing. In fact, several Google 

groups prefer more general user sto-

ries over more speci�c test cases when 

engaging with external contractors 

or when organizing a crowdsourced4 

exploratory testing effort. Test cases 

that are speci�c can become boring as 

a contractor executes them over and 

over, whereas a user story provides 

enough leeway in deciding speci�c be-

haviors to make testing more fun and 

less prone to mistakes. 

Whether your ultimate goal is user 

stories, test cases, or both, we devel-

oped three general guidelines at Google 

for translating capabilities to test cases:

FIGURE 5. Heat map of risk areas per attribute-component pair, for inherent risk, bugs, 

and code churn. The darker the box, the greather the risk and thus the more testing required. 

When tests are successfully executed, the dark areas become lighter. 



 NOVEMBER/DECEMBER 2012  | IEEE SOFTWARE  77

•	 Every	 capability	 should	 be	 linked	
to	at	least	one	test	case. If the capa-

bility is important enough to docu-

ment, it’s important enough to test. 

•	 Many	 capabilities	 require	 more	
than	one	test	case. Variation in the 

inputs, input sequences, system vari-

ables, data used, and so forth re-

quire multiple test cases. The attacks 

in How	to	Break	Software5 and the 

tours in Exploratory	Software	Test-
ing6 offer guidance on selecting test 

cases and thinking through data 

and inputs in ways that are more 

likely to turn a capability into a test 

case that �nds a bug.

•	 Not	all	capabilities	are	equal; some 

are more important than others. 

Once the ACC document is com-

plete, it speci�es everything we could 

test if budget and time weren’t a prob-

lem. Given that both are major prob-

lems, the next step is to associate the 

capabilities with a risk and distinguish 

their importance.

Prioritization and Risk
Our 10-minute goal leaves too little 

time to stack-rank the capabilities to 

determine the order in which we con-

vert them to tests. A more realistic goal 

is to assess the relative importance of 

each capability to the overall mission. 

We do this with two simple variables: 

expected frequency of failure and fail-

ure impact.

With regard to expected frequency, 

as a function of complexity, usage 

rates, and so forth, how often do you 

anticipate the capability to fail? A ca-

pability that establishes a network con-

nection might be expected to fail fairly 

often. Capabilities that represent the 

work of a new developer or that depend 

on �aky external resources may also 

fail often. 

With regard to impact, if the capa-

bility does fail, how dire are the conse-

quences to a user? If all the user has to 

do is reenter a value, the impact is low. 

If the user loses data, the impact is high. 

Together, these variables represent 

the minimum amount of thinking a tes-

ter must perform from a prioritization 

and risk perspective. If we give these 

two factors numerical weights and sum 

them, we can group the capabilities into 

higher- and lower-risk categories and 

make more organized decisions about 

test coverage. We can even get views of 

testing needs based on these values, as 

Figure 5 shows. 

O
bviously, regulated or safety-

critical software must do 

far more than what I’ve pre-

scribed here. However, the core of 

test planning is about discovering and 

documenting testing effort, and the 

10-minute test plan represents the core 

activity that must be performed. 

A complete ACC is a guide for either 

performing testing or simply organiz-

ing it. It lets you clearly scrutinize each 

area for the type of testing you want to 

do—for example,

•	 automate tests for certain groups of 

high-risk capabilities; 

•	 write test scripts for speci�c groups 

of capabilities that you want to test 

frequently;

•	 select capability sets for exploratory 

testing without any further docu-

mentation beyond the ACC; and

•	 outsource or crowdsource certain 

groups of capabilities.

ACC makes it easy to ensure that 

each type of testing has minimal overlap 

or that high-risk areas have purposeful 

overlap. The idea is to be mindful of all 

the testing that takes place either by ac-

tual testers or by collaborating groups 

such as beta users or a dog food team.7 

Then you can map the testing back to 

ACC to see just how well the actual 

testing covers the testing surface.

References
 1. IEEE	Std.	829:	Software	Test	Documenta-

tion, IEEE, 1998.

 2. K. Beck, Extreme	Programming	Explained, 
2nd ed., Addison-Wesley Professional, 2004.

 3. A. Cockburn, Writing	Effective	Use	Cases, 
Addison-Wesley Professional, 2000.

 4. J. Winsor, “Crowdsourcing: What It Means 
for Innovation,” Business	Week, 15 June 
2009, http://innovbfa.viabloga.com/�les/
BusinessWeek___Crowdsourcing___What_it_
means_for_Innovation___june_2009.pdf.

 5. J. Whittaker, How	to	Break	Software:	A	Prac-
tical	Guide	to	Testing, Addison-Wesley, 2002.

 6. J. Whittaker, Exploratory	Software	Testing:	
Tips,	Tricks,	Tours,	and	Techniques	to	Guide	
Test	Design, Addison-Wesley Professional, 
2009.

 7. W. Harrison, “Eating Your Own Dog Food,” 
IEEE	Software, vol. 23, no. 3, 2006, pp. 5–7.

ABOUT THE AUTHOR

JAMES A. WHITTAKER was an engineering director at Google before return-

ing to Microsoft as a development manager. His research interests are in devel-

oper platforms and application development. Whittaker has a PhD in computer 

science from the University of Tennessee. He’s written several books, including 

How to Break Software, its series follow-ups, and Exploratory Software Testing; 

he also wrote cowrote How Google Tests Software (Addison-Wesley, 2012).

Contact him at docjamesw@gmail.com.

Selected CS articles and columns  

are also available for free at  

http://ComputingNow.computer.org.



Copyright of IEEE Software is the property of IEEE Computer Society and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


