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The multiple non-symmetric correspondence analysis (MNSCA) is a useful technique for analysing the

prediction of a categorical variable through two or more predictor variables placed in a contingency table.

In MNSCA framework, for summarizing the predictability between criterion and predictor variables, the

Multiple-TAU index has been proposed. But it cannot be used to test association, and for overcoming

this limitation, a relationship with C-Statistic has been recommended. Multiple-TAU index is an overall

measure of association that contains both main effects and interaction terms. The main effects represent

the change in the response variables due to the change in the level/categories of the predictor variables,

considering the effects of their addition. On the other hand, the interaction effect represents the combined

effect of predictor variables on the response variable. In this paper, we propose a decomposition of the

Multiple-TAU index in main effects and interaction terms. In order to show this decomposition, we con-

sider an empirical case in which the relationship between the demographic characteristics of the American

people, such as race, gender and location (column variables), and their propensity to move (row variable)

to a new town to find a job is considered.

Keywords: multiple non-symmetric correspondence analysis; multiple-TAU index; main effects and

interaction term; confidence circles; C-Statistic

1. Introduction

The prediction of a categorical variable (or criterion variable), through one or more predictor

variables, frequently happens in empirical research. When there are a criterion variable and a

predictor variable, and data are placed in a two-way contingency table, the non-symmetric cor-

respondence analysis allows analysing the asymmetric relationship between variables [5]. When

the criterion variables are two or more, the relationship structure becomes more complicated.

In fact, it depends on both the main effects of each variable and the effect of the interactions.

When two criterion variables are considered, the analysis of relationship could be performed

*Corresponding author. Email: antonello.dambra@unina2.it

c© 2015 Taylor & Francis

mailto:antonello.dambra@unina2.it


Journal of Applied Statistics 2193

using the external information [13] or through the ANOVA performed on composite coordinates

of multiple non-symmetrical correspondence analysis (MNSCA) [3,4].

Considering this [3,4], the aim of this paper, in MNSCA framework, is to propose a decom-

position of the multiple-TAU index into main effects and interaction terms. In particular, for

simplicity, we consider the case of three predictor variables, but the results can be generalized

for more than three predictors variables.

The paper is organized as follows: after the statistics notation (Section 2), in the third section,

a short presentation of the MNSCA is done; particularly, the multiple-TAU index and the C-

Statistic are illustrated. In Section 4, the decomposition of the multiple-TAU index into main

effects and interaction terms is developed. An empirical study on the propensity to move for job

of the US citizens is analysed in Section 5; particularly, the multiple-TAU index decomposition

has been used in order to point out the advantages of the proposal.

2. Statistics notation

Let N be a two-way contingency table in which we consider the cross-classification of n sta-

tistical units according to four categorical variables Y, A, B and C. Define Y as the first (row)

criterion variable consisting of I categories. The columns have been obtained by means of the

concatenation of three predictor variables A, B and C of J, K and W categories, respectively.

The contingency table dimension are I × (J × K × W) with general term nijkw (i = 1, 2, . . . , I;

j = 1, 2, . . . , J ; k = 1, 2, . . . , K and w = 1, 2, . . . , W ). Let P = (nijkw/n = pijkw) be the rela-

tive frequency distribution and let pi••• =
∑J

j=1

∑K
k=1

∑W
w=1 pijkw and p•jkw =

∑I
i=1 pijkw be the

marginal row and column frequencies, respectively.

3. Multiple non-symmetric correspondence analysis

The MNSCA allows studying the association between row variable and column predictor

variables, particularly applying the Generalized Singular Value Decomposition to the matrix

� = {πijkw = pijkw/p•jkw − pi•••} with weights p•jkw, we obtain

πijkw = pijkw

p•jkw

− pi••• =
M

∑

m=1

aimλmbjkwm (1)

with the constraints

I
∑

i=1

aimaim′ =
{

1, m = m′

0, m �= m′

I
∑

j=1

J
∑

k=1

W
∑

w=1

p•jkwbjkwmbjkwm′ =
{

1, m = m′

0, m �= m′

and where M = [min(I, J × K × W) − 1], λm(m = 1, 2, . . . M ) are generalized singular values

(arranged in descending order), aim is a general element of the singular vector am, bjkwm is an

element of the joined singular vector bm associated with the predictor variables.

For visualizing the dependence between the row and column categories, the row and column

profile coordinates can be computed:

fim = aimλm, (2)

gjkwn = bjkwnλm,

In MNSCA, the effects of the predictor variables (in term of both main effect and interaction

effect) on response variable are mixed. For summarizing the association between criterion and
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predictor variables, the multiple-TAU can be used [6,7].

τmult =
∑I

i=1

∑J
j=1

∑K
k=1

∑W
w=1 p•jkw(pijkw/p•jkw) − pi•••2

1 −
∑I

i=1 p2
i•••

= num(τmult)

1 −
∑I

i=1 p2
i•••

. (3)

We focus our discussion on the numerator of τmult, since 1 −
∑I

i=1 p2
i••• is independent of

nijkw(∀i, j, k, w).

Although τmult is an appropriate measure of predictability, it cannot be used to test association.

In order to overcome this limitation for testing the association, the C-Statistic [9] can be used:

C = (n − 1)(I − 1)τmult = (n − 1)(I − 1)

∑M
m=1 λ2

m

1 −
∑I

i=1 p2
i•••

. (4)

C-Statistic and τmult are linked [1]; moreover, in case of zero predictability hypothesis (no asso-

ciation between variables), it has been shown that C-Statistic is asymptotically a chi-squared

distribution with {(I − 1) × [(J × K × W) − 1]} degree of freedom [9]. When the variables are

considered to be symmetrically related, as in the case of Correspondence Analysis, confidence

circles (CCs) have been proposed in order to identify those categories that are significant [8].

These CCs are similar to those used in canonical analysis [10]. Another approach to calculate

CCs is based on the bootstrap procedure; also for MNSCA, the construction of CCs has been

proposed [2].

The 1 − α CC for the jkwth column coordinate in MNSCA plot has the following radius

length:

radjkw =

√

χ2
2,α(1 −

∑r
i=1 p2

i•••)

p•jkw(n − 1)(I − 1)
. (5)

4. Decomposition of the multiple TAU into main effects and interaction term

The main effects represent the change in the response variable due to the change in the

levels/categories of the predictor variables.

On the other hand, the interaction effect represents the combined effect of predictor variables

on the response variable. In particular, there is an interaction between two predictor variables

when the effect of one predictor variable varies as the levels/categories of the other predictor

vary.

If the interaction is not statistically significant, it is possible to examine the main effects.

Instead, if the interaction is statistically significant, then, it is not appropriate to consider the

main effects. As a matter of fact, asserting that two predictor variables interact is the same as

affirming that the two variables do not have separate effects [11].

The main aim of this paper is to propose a decomposition of τmult for separating the main

effects and the interaction terms. The proposed approach, in MNSCA framework, starts from

the exact reconstruction formula of the contingency table by using eigenvalues and profile

coordinates, particularly,

pijkw = p•jkw

[

pi••• +
M

∑

m=1

(

1√
λm

)

fimgjkwm

]

. (6)

The coordinates gjkwm computed according to Equation (2) include the main effects and the

interactions.
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Taking into account the procedure suggested by [3,4], we substitute in Equation (6) the

gjkwm (m = 1, 2, . . . M ) with the estimation ĝjkwn obtained by means of the three-way ANOVA

in terms of projectors [14].

Let D = [DA|DB|DC] be the matrix of dummy variables, in which the slices DA (factor A), DB

(factor B) and DC (factor C) are obtained as:

DA = IW ⊗ 1(J×K),

DB = 1W ⊗ (IK ⊗ 1J ), (7)

DC = 1(K×W) ⊗ IJ ,

where IW , IK and IJ are identity matrices and 1 is a column vector whose elements are all 1.

Subsequently, we build the matrix DR (resp. DRA, resp. DRB, resp. DRC) by means of the repetition

of each row of the matrix D (resp. DA, resp. DB, resp. DC) as many times as the n•jkw.

In this way, considering the ANOVA framework, we can compute the main effects by using

the orthogonal projectors:

ĝR{ĝA∪B∪C
hm } = DR(D′

RDR)
−1

D′
RgR Main effects,

ĝRA{ĝA
hm} = DRA(D′

RADRA)
−1

D′
RAgR Main effect A, (8)

ĝRB{ĝB
hm} = DRB(D′

RBDRB)
−1

D′
RBgR Main effect B,

ĝRC{ĝC
hm} = DRC(D′

RCDRC)
−1

D′
RCgR Main effect C,

βlm = (D′D)−1D′ghm where gR is a matrix of size (n × M ) whose elements ghm (h = 1, 2, . . . , n

and m = 1, 2, . . . , M ) have been obtained repeating the gjkwm (∀j, k, w, m) as many times as the

n•jkw. Also, the values contained ĝR (resp. ĝRA, resp. ĝRB, resp. ĝRC) are repeated as in gR (resp.

gRA, resp. gRB, resp. gRC) and if we consider only the values not identical, they represent the

estimations of main effects ĝA∪B∪C
jkwm (resp. ĝA

jkwm, resp. ĝB
jkwm, resp. ĝC

jkwm). Then, in the case of main

effects (but the same could be computed for each Main Effect), the fitted values ĝA∪B∪C
jkwm are

inserted in Equation (6):

p̂A∪B∪C
ijkw = p•jkw

[

pi••• +
M

∑

m=1

1√
λm

fimĝA∪B∪C
jkwm

]

. (9)

By this way, we obtain a new fitted matrix P̂ A∪B∪C (with the same marginal row and col-

umn frequencies of P) representing the reconstruction matrix P with only main effects (ignoring

interactions).

Using these results, we obtain the following orthogonal decomposition of num (τmult):

I
∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

[

(

pijkw

p•jkw

− pi•••

)2

p•jkw

]

numerator of τM

=
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂A∪B∪C
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦

Main Effects

+
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

pijkw

p•jkw

−
p̂A∪B∪C

ijkw

p•jkw

)2

p•jkw

⎤

⎦

Interaction effect

.

(10)

In particular, we decompose num (τmult) in the sum of the main effects (A ∪ B ∪ C)and

the interaction effect (A × B × C). The main effects could be handily decomposed into the

following:
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The main effect of the factor A + the main effects of B and C (B ∪ C) conditioned to the main

effect of the factor A (we consider the conditional effect since the design is unbalanced and thus

the single effects are no longer orthogonal)

I
∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂A∪B∪C
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦ =
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂A
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦

+
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂
(B∪C)/A

ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦.

(11)

The main effect of the factor B + the main effects of A and C (A ∪ C) conditioned to the effect

of the factor B:

I
∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂A∪B∪C
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦ =
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂B
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦

+
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂
(A∪C)/B

ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦.

(12)

The main effect of the factor C + the main effects of A and B (A ∪ B) conditioned to the effect

of the factor C:

I
∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂A∪B∪C
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦ =
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂C
ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦

+
I

∑

i=1

J
∑

j=1

K
∑

k=1

W
∑

w=1

⎡

⎣

(

p̂
(A∪B)/C

ijkw

p•jkw

− pi•••

)2

p•jkw

⎤

⎦.

(13)

In case of three predictor variables, we can obtain 13 decompositions of the τmult (Table 1).

For each decomposition, the C-Statistic that under null hypothesis is distributed as a chi-square

can be calculated (for degrees of freedom see Table 2).

Table 1. Decomposition of τmult.

A ∪ B ∪ C + (A × B × C)
A + (B ∪ C)/A + (A × B × C)
B + (A ∪ C)/B + (A × B × C)
C + (A ∪ B)/C + (A × B × C)

A ∪ B + C/(A ∪ B) + (A × B × C)
A + B/A + C/(A ∪ B) + (A × B × C)
A/B + B + C/(A ∪ B) + (A × B × C)

A ∪ C + B/(A ∪ C) + (A × B × C)
A + C/A + B/(A ∪ C) + (A × B × C)
A/C + C + B/(A ∪ C) + (A × B × C)

B ∪ C + A/(B ∪ C) + (A × B × C)
B + C/B + A/(B ∪ C) + (A × B × C)
B/C + C + A/(B ∪ C) + (A × B × C)
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Table 2. Degrees of freedom for C-Statistic.

(I − 1) × [(J − 1) + (K − 1) + (W − 1)] + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (W − 1) + (I − 1) × [(K − 1) + (J − 1)] + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (K − 1) + (I − 1) × [(W − 1) + (J − 1)] + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (J − 1) + (I − 1) × [(W − 1) + (K − 1)] + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1)*[(W − 1) + (K − 1)] + (I − 1) × (J − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (W − 1) + (I − 1) × (K − 1) + (I − 1) × (J − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (W − 1) + (I − 1) × (K − 1) + (I − 1) × (J − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × [(W − 1) + (J − 1)] + (I − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (W − 1) + (I − 1) × (J − 1) + (I − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (W − 1) + (I − 1) × (J − 1) + (I − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × [(K − 1) + (J − 1)] + (J − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (K − 1) + (I − 1) × (J − 1) + (J − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

(I − 1) × (K − 1) + (I − 1) × (J − 1) + (J − 1) × (W − 1) + (I − 1) × [(J × K × W ) − J − K − W + 2]

5. The empirical study

The aim of the study is to evaluate how demographic characteristics of US citizen, gender (X 1),

race (X 2) and location (X 3) influence the inclination of individuals moving to another state (Y 1)

in order to find a job. Many recent studies analysed the relationship between these characteristics

and the decision to move for job [11]. Y 1 has been classified into four categories: people who do

not prefer changing residential country ‘No-Move’; people who prefer moving to West American

direction ‘West America’; people who prefer moving to East American direction ‘East America’;

and ‘Undecided’ people. In this way, we can study both propensity to mobility and favourite

destination. The data have been placed in a three-way contingency table (Table 3).

In order to analyse the dependence structure, MNSCA has been carried out. The τmult numer-

ator and the C-Statistic are 0.0805 and 1520.962 (DoF = 21, P-value = 0.000), respectively.

The factorial plan representations (99.64% of explained variability on the first two axes) have

been considered (Figure 1). In Figure 1(a), the Y 1’s categories have been drawn. In Figure 1(b),

in which the categories of predictor variable have been plotted, we notice that Male categories

are on the left part of the figure and Female categories on the right. Considering Figure 1(a) and

1(b) jointly, we observe that the citizen ‘White, Female, West – W.F.W’ and ‘Black, Female,

West – B.F.W’ prefer to move towards East, while the citizen ‘White, Male, East – W.M.E’ and

‘Black, Male, East – B.M.E’ prefer to move towards West.

In order to identify the categories which are statistically significant, the CCs [2] have been

computed (Figure 2). In this case, all categories are statistically significant for explaining Y 1.

Table 3. Cross-classification of 4518 US citizen according to Decision to move, Race, Gender and Location.

Black White

Male Female Male Female

West East West East West East West East Total

Prefer to stay (no-move) 98 42 130 462 184 173 27 240 1356
Prefer to move to West 96 438 61 190 294 437 25 46 1587
Prefer to move to East 18 84 135 394 81 82 88 194 1076
Undecided 26 56 52 136 81 82 20 46 499

Total 238 620 378 1182 640 774 160 526 4518
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Figure 1. MNSCA for P – factorial planes.
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Figure 2. MNSCA for P – CCs for the categories of predictor variables.

Table 4. Decomposition of the τmult in main effects and inter-

action term.

Stat. C DoF P-Value

Race ∪ Gender ∪ Location 1301.128 9 0.000
Race × Gender × Location 219.834 12 0.000
Total 1520.692 21 0.000

In order to improve the analysis of the dependence structure between criterion and predictor

variables, according to Table 1, the τmult numerator has been decomposed. The decomposition

into main effects and interaction term shows that they are statistically significant (Table 4).

For detecting which main effects are statistically significant, further decompositions of τmult

have been performed (Tables 5–7). In particular, we observe that only the main effect Race is not

significant, while Gender and Location are statistically significant.
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Table 5. τmult – main effect Race vs. others.

Stat. C DoF P-Value

Race 6.009 3 0.111
(Gender ∪ Location)/Race 1295.119 6 0.000
Race × Gender × Location 219.834 12 0.000

Total 1520.692 21 0.000

Table 6. τmult – main effect Gender vs. others.

Stat. C DoF P-Value

Gender 1215.541 3 0.000
(Race ∪ Location)/Gender 85.587 6 0.000
Race × Gender × Location 219.834 12 0.000

Total 1520.692 21 0.000

Table 7. τmult – main effect Location vs. others.

Stat. C DoF P-Value

Location 26.886 3 0.000
(Race ∪ Gender)/Location 1274.242 6 0.000
Race × Gender × Location 219.834 12 0.000

Total 1520.692 21 0.000

B.M.E

W.M.E W.F.E

B.M.W B.F.W

B.F.E

W.M.W W.F.W

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3

First Factor First Factor

–0.4 –0.2 0.0 0.2 0.4

–
0
.0

1
0

–
0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

S
e
c
o
n
d
 F

a
c
to

r

–
0
.0

3
–
0
.0

2
–
0
.0

1
0
.0

0
0
.0

1
0
.0

2
0
.0

3

S
e
c
o
n
d
 F

a
c
to

r

Prefer to move  toWest

Prefer to stay

Prefer to move to Est

Undecided

(a) (b)

Figure 3. MNSCA for P̂ A∪B∪C – factorial planes.

By using Equation (9), we reconstruct the matrix P̂ A∪B∪C (main effects without interaction)

and we perform an MNSCA (Figure 3). Also in this case, we retain two factors (99.89% of

explained variability). Looking at Figure 3(b), we observe that Male categories are on the left

part; the contrary happens for Female categories (as in Figure 1(b)). Moreover, West categories

are on the high part while East categories are on the law part of the plan.
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Table 8. Matrix of the squared distances between the columns of P̂ A∪B∪C .

B.M.W B.M.E B.F.W B.F.E W.M.W W.M.E W.F.W W.F.E

B.M.W –
B.M.E 0.103 –
B.F.W 0.552 0.651 –
B.F.E 0.455 0.552 0.103 –
W.M.W 0.093 0.195 0.461 0.366 –
W.M.E 0.017 0.093 0.559 0.461 0.103 –
W.F.W 0.644 0.743 0.093 0.195 0.552 0.651 –
W.F.E 0.546 0.644 0.017 0.093 0.455 0.552 0.103 –
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Figure 4. MNSCA for P̂ A∪B∪C – CCs for categories column.

Later, we calculated the squared distances between columns of P̂ A∪B∪C (Table 8) using the

following formula:

d2(jkw; jkw′) =
r

∑

i=1

(

p̂A∪B∪C
ijkw

p•jkw

−
p̂A∪B∪C

ijkw′

p•jkw′

)2

(∀ w �= w′). (14)

We point out that the squared distances between two categories of a main effect are equal

independently from the categories of other two variables.

For example, the squared distance between the categories of Location is 0.103; in fact,

d2(BME; BMW) = d2(BFE; BFW) = d2(WME; WMW) = d2(WFE; WFW) = 0.103.

In order to detect the categories of the predictor variables that influence the criterion vari-

able, the CCs have been represented (Figure 4). As can be seen, all categories are statistically

significant.

Performing an MNSCA on the matrix P̂ A×B×C we analyse the interaction effects. Particularly,

we observe that ‘B.M.W’ prefer to stay (No-move), while the ‘W.F.W’ prefer to move towards

East and ‘B.F.W’ prefer to move towards West.

Also in this case, we construct the CCs for the categories column and we represent the

categories not statistically significant.

By comparing the plot of MNSCA on the original table (Figure 1) with the plot of interaction

(Figure 5), we can observe how the joint effect of the race, gender and location (interaction effect)

leads to a different behaviour of the women in terms of e propensity to move. In particular, the
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Figure 5. MNSCA for P̂ A×B×C – factorial planes.

Figure 6. MNSCA for P̂ A×B×C – CCs for categories column not statistically significant.

black women of the West do prefer to move, but remain within the West America. While, in the

original plot, where we consider both the main effects and interaction term, this relation is not

clear or not identified (Figure 6).

6. Discussion

In this paper, an extension of MNSCA, obtained through the decomposition of the Multiple-TAU

index, has been proposed. This decomposition allows separating the main effects and interaction

term in the Multiple-TAU index. In this way, it is possible to have the following advantages:

to take into account only the statistically significant components, to examine in depth the effect

of each predictor variable on criterion variable, to investigate the impact of each modality of

statistically significant predictor variable and to detect if there are combined effects of criterion

variables that could not be identified with the classical approach.

This proposal has been used to analyse the relationship between the demographic character-

istics (Race, Gender and Location) of US citizen and their propensity to move for job. Through

this approach, integrating the results obtained with the traditional statistical methods, we have

shown that a deepened point of view for the phenomenon can be obtained.
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